摘要翻译:
本文提出了一种交互式求解多目标优化问题的方法。在局部搜索的基础上,计算智能技术支持有效解的识别,而搜索是由决策者获得的部分偏好信息指导的。本文报告了该方法在双目标投资组合优化中的一个应用,模型为著名的背包问题,并报告了从文献中选取的基准实例的实验结果。总之,我们得到了令人鼓舞的结果,表明了该方法对所描述问题的适用性。
---
英文标题:
《Proposition of the Interactive Pareto Iterated Local Search Procedure -
Elements and Initial Experiments》
---
作者:
Martin Josef Geiger
---
最新提交年份:
2008
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Artificial Intelligence 人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
一级分类:Computer Science 计算机科学
二级分类:Human-Computer Interaction 人机交互
分类描述:Covers human factors, user interfaces, and collaborative computing. Roughly includes material in ACM Subject Classes H.1.2 and all of H.5, except for H.5.1, which is more likely to have Multimedia as the primary subject area.
包括人为因素、用户界面和协作计算。大致包括ACM学科课程H.1.2和所有H.5中的材料,除了H.5.1,它更有可能以多媒体作为主要学科领域。
--
---
英文摘要:
The article presents an approach to interactively solve multi-objective optimization problems. While the identification of efficient solutions is supported by computational intelligence techniques on the basis of local search, the search is directed by partial preference information obtained from the decision maker. An application of the approach to biobjective portfolio optimization, modeled as the well-known knapsack problem, is reported, and experimental results are reported for benchmark instances taken from the literature. In brief, we obtain encouraging results that show the applicability of the approach to the described problem.
---
PDF链接:
https://arxiv.org/pdf/0809.0753


雷达卡



京公网安备 11010802022788号







