摘要翻译:
为了有效地捕获信号,我们设计了一个鲁棒的结构化稀疏感知矩阵,它由一个每行有少量非零条目的稀疏矩阵和一个稠密的基矩阵组成,通过最小化等效字典的Gram矩阵与保持小相互相干的矩阵的目标Gram矩阵之间的距离来设计鲁棒的结构化稀疏感知矩阵。此外,加入了一个正则化,以加强优化的结构化稀疏感知矩阵对感兴趣信号的稀疏表示误差(SRE)的鲁棒性。针对相应的优化问题,提出了一种具有全局序列收敛性的交替极小化算法。在合成数据和自然图像上的数值实验表明,所得到的结构化感知矩阵比随机密集感知矩阵具有更高的信号重构率。
---
英文标题:
《Optimized Structured Sparse Sensing Matrices for Compressive Sensing》
---
作者:
Tao Hong, Xiao Li, Zhihui Zhu and Qiuwei Li
---
最新提交年份:
2019
---
分类信息:
一级分类:Electrical Engineering and Systems Science 电气工程与系统科学
二级分类:Signal Processing 信号处理
分类描述:Theory, algorithms, performance analysis and applications of signal and data analysis, including physical modeling, processing, detection and parameter estimation, learning, mining, retrieval, and information extraction. The term "signal" includes speech, audio, sonar, radar, geophysical, physiological, (bio-) medical, image, video, and multimodal natural and man-made signals, including communication signals and data. Topics of interest include: statistical signal processing, spectral estimation and system identification; filter design, adaptive filtering / stochastic learning; (compressive) sampling, sensing, and transform-domain methods including fast algorithms; signal processing for machine learning and machine learning for signal processing applications; in-network and graph signal processing; convex and nonconvex optimization methods for signal processing applications; radar, sonar, and sensor array beamforming and direction finding; communications signal processing; low power, multi-core and system-on-chip signal processing; sensing, communication, analysis and optimization for cyber-physical systems such as power grids and the Internet of Things.
信号和数据分析的理论、算法、性能分析和应用,包括物理建模、处理、检测和参数估计、学习、挖掘、检索和信息提取。“信号”一词包括语音、音频、声纳、雷达、地球物理、生理、(生物)医学、图像、视频和多模态自然和人为信号,包括通信信号和数据。感兴趣的主题包括:统计信号处理、谱估计和系统辨识;滤波器设计;自适应滤波/随机学习;(压缩)采样、传感和变换域方法,包括快速算法;用于机器学习的信号处理和用于信号处理应用的机器学习;网络与图形信号处理;信号处理中的凸和非凸优化方法;雷达、声纳和传感器阵列波束形成和测向;通信信号处理;低功耗、多核、片上系统信号处理;信息物理系统的传感、通信、分析和优化,如电网和物联网。
--
一级分类:Computer Science 计算机科学
二级分类:Machine Learning 机器学习
分类描述:Papers on all aspects of machine learning research (supervised, unsupervised, reinforcement learning, bandit problems, and so on) including also robustness, explanation, fairness, and methodology. cs.LG is also an appropriate primary category for applications of machine learning methods.
关于机器学习研究的所有方面的论文(有监督的,无监督的,强化学习,强盗问题,等等),包括健壮性,解释性,公平性和方法论。对于机器学习方法的应用,CS.LG也是一个合适的主要类别。
--
---
英文摘要:
We consider designing a robust structured sparse sensing matrix consisting of a sparse matrix with a few non-zero entries per row and a dense base matrix for capturing signals efficiently We design the robust structured sparse sensing matrix through minimizing the distance between the Gram matrix of the equivalent dictionary and the target Gram of matrix holding small mutual coherence. Moreover, a regularization is added to enforce the robustness of the optimized structured sparse sensing matrix to the sparse representation error (SRE) of signals of interests. An alternating minimization algorithm with global sequence convergence is proposed for solving the corresponding optimization problem. Numerical experiments on synthetic data and natural images show that the obtained structured sensing matrix results in a higher signal reconstruction than a random dense sensing matrix.
---
PDF链接:
https://arxiv.org/pdf/1709.06895


雷达卡



京公网安备 11010802022788号







