摘要翻译:
在Shafer和Vovk(2001)的博弈论概率框架下,研究了掷硬币博弈中的多步贝叶斯下注策略。我们表明,通过这些策略的可数混合,赌徒或投资者可以利用独立的伯努利试验中自然运动的任意偏离模式。然后,我们将我们的方案应用于连续时间的资产交易博弈,得到了当资产价格路径的变化指数偏离2时投资者资本的指数增长率。
---
英文标题:
《Multistep Bayesian strategy in coin-tossing games and its application to
asset trading games in continuous time》
---
作者:
Kei Takeuchi, Masayuki Kumon and Akimichi Takemura
---
最新提交年份:
2008
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Trading and Market Microstructure 交易与市场微观结构
分类描述:Market microstructure, liquidity, exchange and auction design, automated trading, agent-based modeling and market-making
市场微观结构,流动性,交易和拍卖设计,自动化交易,基于代理的建模和做市
--
一级分类:Mathematics 数学
二级分类:Probability 概率
分类描述:Theory and applications of probability and stochastic processes: e.g. central limit theorems, large deviations, stochastic differential equations, models from statistical mechanics, queuing theory
概率论与随机过程的理论与应用:例如中心极限定理,大偏差,随机微分方程,统计力学模型,排队论
--
---
英文摘要:
We study multistep Bayesian betting strategies in coin-tossing games in the framework of game-theoretic probability of Shafer and Vovk (2001). We show that by a countable mixture of these strategies, a gambler or an investor can exploit arbitrary patterns of deviations of nature's moves from independent Bernoulli trials. We then apply our scheme to asset trading games in continuous time and derive the exponential growth rate of the investor's capital when the variation exponent of the asset price path deviates from two.
---
PDF链接:
https://arxiv.org/pdf/0802.4311


雷达卡



京公网安备 11010802022788号







