摘要翻译:
共定位是生物荧光显微镜中研究荧光标记分子间相互作用的有力工具。然而,现有的共定位分析技术并没有得到持续的发展,特别是在稳健的统计支持方面。在本文中,我们考察了两种最流行的用于共域化的量化技术,并论证了它们可以利用非参数统计和扫描统计的思想来改进。特别地,我们提出了一个新的共域化度量,它是鲁棒的,易于实现的,并且在严格的统计测试框架中是最优的。应用于几个基准数据集和生物实例,进一步证明了所提技术的有效性。
---
英文标题:
《Automated and Robust Quantification of Colocalization in Dual-Color
Fluorescence Microscopy: A Nonparametric Statistical Approach》
---
作者:
Shulei Wang, Ellen T. Arena, Kevin W. Eliceiri, Ming Yuan
---
最新提交年份:
2017
---
分类信息:
一级分类:Statistics 统计学
二级分类:Methodology 方法论
分类描述:Design, Surveys, Model Selection, Multiple Testing, Multivariate Methods, Signal and Image Processing, Time Series, Smoothing, Spatial Statistics, Survival Analysis, Nonparametric and Semiparametric Methods
设计,调查,模型选择,多重检验,多元方法,信号和图像处理,时间序列,平滑,空间统计,生存分析,非参数和半参数方法
--
一级分类:Electrical Engineering and Systems Science 电气工程与系统科学
二级分类:Image and Video Processing 图像和视频处理
分类描述:Theory, algorithms, and architectures for the formation, capture, processing, communication, analysis, and display of images, video, and multidimensional signals in a wide variety of applications. Topics of interest include: mathematical, statistical, and perceptual image and video modeling and representation; linear and nonlinear filtering, de-blurring, enhancement, restoration, and reconstruction from degraded, low-resolution or tomographic data; lossless and lossy compression and coding; segmentation, alignment, and recognition; image rendering, visualization, and printing; computational imaging, including ultrasound, tomographic and magnetic resonance imaging; and image and video analysis, synthesis, storage, search and retrieval.
用于图像、视频和多维信号的形成、捕获、处理、通信、分析和显示的理论、算法和体系结构。感兴趣的主题包括:数学,统计,和感知图像和视频建模和表示;线性和非线性滤波、去模糊、增强、恢复和重建退化、低分辨率或层析数据;无损和有损压缩编码;分割、对齐和识别;图像渲染、可视化和打印;计算成像,包括超声、断层和磁共振成像;以及图像和视频的分析、合成、存储、搜索和检索。
--
一级分类:Quantitative Biology 数量生物学
二级分类:Quantitative Methods 定量方法
分类描述:All experimental, numerical, statistical and mathematical contributions of value to biology
对生物学价值的所有实验、数值、统计和数学贡献
--
---
英文摘要:
Colocalization is a powerful tool to study the interactions between fluorescently labeled molecules in biological fluorescence microscopy. However, existing techniques for colocalization analysis have not undergone continued development especially in regards to robust statistical support. In this paper, we examine two of the most popular quantification techniques for colocalization and argue that they could be improved upon using ideas from nonparametric statistics and scan statistics. In particular, we propose a new colocalization metric that is robust, easily implementable, and optimal in a rigorous statistical testing framework. Application to several benchmark datasets, as well as biological examples, further demonstrates the usefulness of the proposed technique.
---
PDF链接:
https://arxiv.org/pdf/1710.00965


雷达卡



京公网安备 11010802022788号







