摘要翻译:
利用序列未投影构造{e}tale六对一覆盖的(Gorenstein余维数5)正则环,得到了一族具有z/6扭转的数值Campedelli曲面。在第二节中,我们发展了必要的代数机制。第3节包含数值Campedelli曲面构造,而第4节包含备注和开放问题。
---
英文标题:
《A construction of numerical Campedelli Surfaces with \Z/6 torsion group》
---
作者:
Jorge Neves and Stavros Argyrios Papadakis
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Commutative Algebra 交换代数
分类描述:Commutative rings, modules, ideals, homological algebra, computational aspects, invariant theory, connections to algebraic geometry and combinatorics
交换环,模,理想,同调代数,计算方面,不变理论,与代数几何和组合学的联系
--
---
英文摘要:
We produce a family of numerical Campedelli surfaces with \Z/6 torsion by constructing the (Gorenstein codimension 5) canonical ring of the \'{e}tale six to one cover using serial unprojection. In Section 2 we develop the necessary algebraic machinery. Section 3 contains the numerical Campedelli surface construction, while Section 4 contains remarks and open questions.
---
PDF链接:
https://arxiv.org/pdf/0707.0244


雷达卡



京公网安备 11010802022788号







