摘要翻译:
在机器唇读中,即从视觉信息中识别语音,有证据表明视觉语音高度依赖于说话人[1]。在这里,我们使用一种音素聚类方法来为单个和多个说话者形成新的音素到视图。我们使用这些地图来检查说话者在视觉上是如何相似地说话的。我们得出的结论是,一般说来,说话者有相同的口吻手势,他们的不同之处在于手势的使用。
---
英文标题:
《Speaker-independent machine lip-reading with speaker-dependent viseme
classifiers》
---
作者:
Helen L. Bear, Stephen J. Cox, Richard W. Harvey
---
最新提交年份:
2017
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Computer Vision and Pattern Recognition 计算机视觉与模式识别
分类描述:Covers image processing, computer vision, pattern recognition, and scene understanding. Roughly includes material in ACM Subject Classes I.2.10, I.4, and I.5.
涵盖图像处理、计算机视觉、模式识别和场景理解。大致包括ACM课程I.2.10、I.4和I.5中的材料。
--
一级分类:Electrical Engineering and Systems Science 电气工程与系统科学
二级分类:Audio and Speech Processing 音频和语音处理
分类描述:Theory and methods for processing signals representing audio, speech, and language, and their applications. This includes analysis, synthesis, enhancement, transformation, classification and interpretation of such signals as well as the design, development, and evaluation of associated signal processing systems. Machine learning and pattern analysis applied to any of the above areas is also welcome. Specific topics of interest include: auditory modeling and hearing aids; acoustic beamforming and source localization; classification of acoustic scenes; speaker separation; active noise control and echo cancellation; enhancement; de-reverberation; bioacoustics; music signals analysis, synthesis and modification; music information retrieval; audio for multimedia and joint audio-video processing; spoken and written language modeling, segmentation, tagging, parsing, understanding, and translation; text mining; speech production, perception, and psychoacoustics; speech analysis, synthesis, and perceptual modeling and coding; robust speech recognition; speaker recognition and characterization; deep learning, online learning, and graphical models applied to speech, audio, and language signals; and implementation aspects ranging from system architecture to fast algorithms.
处理代表音频、语音和语言的信号的理论和方法及其应用。这包括分析、合成、增强、转换、分类和解释这些信号,以及相关信号处理系统的设计、开发和评估。机器学习和模式分析应用于上述任何领域也是受欢迎的。感兴趣的具体主题包括:听觉建模和助听器;声波束形成与声源定位;声场景分类;说话人分离;有源噪声控制和回声消除;增强;去混响;生物声学;音乐信号的分析、合成与修饰;音乐信息检索;多媒体音频和联合音视频处理;口语和书面语建模、切分、标注、句法分析、理解和翻译;文本挖掘;言语产生、感知和心理声学;语音分析、合成、感知建模和编码;鲁棒语音识别;说话人识别与特征描述;应用于语音、音频和语言信号的深度学习、在线学习和图形模型;以及从系统架构到快速算法的实现方面。
--
---
英文摘要:
In machine lip-reading, which is identification of speech from visual-only information, there is evidence to show that visual speech is highly dependent upon the speaker [1]. Here, we use a phoneme-clustering method to form new phoneme-to-viseme maps for both individual and multiple speakers. We use these maps to examine how similarly speakers talk visually. We conclude that broadly speaking, speakers have the same repertoire of mouth gestures, where they differ is in the use of the gestures.
---
PDF链接:
https://arxiv.org/pdf/1710.01122


雷达卡



京公网安备 11010802022788号







