楼主: kedemingshi
544 0

[计算机科学] 单机总加权延误问题-是(为了 元启发式)一个解决的问题? [推广有奖]

  • 0关注
  • 4粉丝

会员

学术权威

78%

还不是VIP/贵宾

-

威望
10
论坛币
15 个
通用积分
89.2735
学术水平
0 点
热心指数
8 点
信用等级
0 点
经验
24665 点
帖子
4127
精华
0
在线时间
0 小时
注册时间
2022-2-24
最后登录
2022-4-15

楼主
kedemingshi 在职认证  发表于 2022-3-4 22:44:00 来自手机 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要翻译:
本文研究了单机总加权延误问题(SMTWTP)的一种较为简单的局部搜索启发式,即爬山和变邻域搜索。特别是,我们重新审视SMTWTP的这些方法,因为在这种情况下,似乎缺乏适当的/具有挑战性的基准实例。所取得的结果确实令人印象深刻。只有很少的实例仍未解决,甚至那些近似于最优/最已知解的1%之内。我们的实验支持了SMTWTP的元启发式方法很有可能导致好的结果的说法,并且在改进搜索策略之前,必须对基准数据的提出做更多的工作。从我们的调查中得出了一些关于构建此类数据集的建议。
---
英文标题:
《The Single Machine Total Weighted Tardiness Problem - Is it (for
  Metaheuristics) a Solved Problem ?》
---
作者:
Martin Josef Geiger
---
最新提交年份:
2009
---
分类信息:

一级分类:Computer Science        计算机科学
二级分类:Artificial Intelligence        人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--

---
英文摘要:
  The article presents a study of rather simple local search heuristics for the single machine total weighted tardiness problem (SMTWTP), namely hillclimbing and Variable Neighborhood Search. In particular, we revisit these approaches for the SMTWTP as there appears to be a lack of appropriate/challenging benchmark instances in this case. The obtained results are impressive indeed. Only few instances remain unsolved, and even those are approximated within 1% of the optimal/best known solutions. Our experiments support the claim that metaheuristics for the SMTWTP are very likely to lead to good results, and that, before refining search strategies, more work must be done with regard to the proposition of benchmark data. Some recommendations for the construction of such data sets are derived from our investigations.
---
PDF链接:
https://arxiv.org/pdf/0907.2990
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:启发式 Intelligence neighborhood Presentation Construction 得出 搜索 加权 挑战性 Single

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
扫码
拉您进交流群
GMT+8, 2026-1-28 06:25