摘要翻译:
背景:肺部听诊是诊断各种呼吸道疾病病的常用工具。以前的研究已经记录了人类肺部声音的许多细节。然而,关于动物气道内声音产生和压力损失的信息很少。由于动物气道的形态与人类有很大的不同,因此,动物气道内的肺音和压力损失的特征也不同。目的:研究小型猪气道树模型的声压损失和静压损失。方法:对小型猪气道树在不同流速下的静压损失和声发射进行了研究。结果:气管静压和声幅随流速的增加而增大。当流速为0.2-0.55Lit/s时,主频约为1840-1870Hz。结论:在流速为0.20~0.55Lit/s范围内,所测声的主频基本一致。对于不同进口流和脉动流条件下的声音产生,还需要进一步的研究。
---
英文标题:
《Pressure Loss and Sound Generated In a Miniature Pig Airway Tree Model》
---
作者:
Md Khurshidul Azad, Amirtaha Taebi, Joseph H Mansy, HA Mansy
---
最新提交年份:
2017
---
分类信息:
一级分类:Electrical Engineering and Systems Science 电气工程与系统科学
二级分类:Signal Processing 信号处理
分类描述:Theory, algorithms, performance analysis and applications of signal and data analysis, including physical modeling, processing, detection and parameter estimation, learning, mining, retrieval, and information extraction. The term "signal" includes speech, audio, sonar, radar, geophysical, physiological, (bio-) medical, image, video, and multimodal natural and man-made signals, including communication signals and data. Topics of interest include: statistical signal processing, spectral estimation and system identification; filter design, adaptive filtering / stochastic learning; (compressive) sampling, sensing, and transform-domain methods including fast algorithms; signal processing for machine learning and machine learning for signal processing applications; in-network and graph signal processing; convex and nonconvex optimization methods for signal processing applications; radar, sonar, and sensor array beamforming and direction finding; communications signal processing; low power, multi-core and system-on-chip signal processing; sensing, communication, analysis and optimization for cyber-physical systems such as power grids and the Internet of Things.
信号和数据分析的理论、算法、性能分析和应用,包括物理建模、处理、检测和参数估计、学习、挖掘、检索和信息提取。“信号”一词包括语音、音频、声纳、雷达、地球物理、生理、(生物)医学、图像、视频和多模态自然和人为信号,包括通信信号和数据。感兴趣的主题包括:统计信号处理、谱估计和系统辨识;滤波器设计;自适应滤波/随机学习;(压缩)采样、传感和变换域方法,包括快速算法;用于机器学习的信号处理和用于信号处理应用的机器学习;网络与图形信号处理;信号处理中的凸和非凸优化方法;雷达、声纳和传感器阵列波束形成和测向;通信信号处理;低功耗、多核、片上系统信号处理;信息物理系统的传感、通信、分析和优化,如电网和物联网。
--
---
英文摘要:
Background: Pulmonary auscultation is a common tool for diagnosing various respiratory diseases. Previous studies have documented many details of pulmonary sounds in humans. However, information on sound generation and pressure loss inside animal airways is scarce. Since the morphology of animal airways can be significantly different from human, the characteristics of pulmonary sounds and pressure loss inside animal airways can be different. Objective: The objective of this study is to investigate the sound and static pressure loss measured at the trachea of a miniature pig airway tree model based on the geometric details extracted from physical measurements. Methods: In the current study, static pressure loss and sound generation measured in the trachea was documented at different flow rates of a miniature pig airway tree. Results: Results showed that the static pressure and the amplitude of the recorded sound at the trachea increased as the flow rate increased. The dominant frequency was found to be around 1840-1870 Hz for flow rates of 0.2-0.55 lit/s. Conclusion: The results suggested that the dominant frequency of the measured sounds remained similar for flow rates from 0.20 to 0.55 lit/s. Further investigation is needed to study sound generation under different inlet flow and pulsatile flow conditions.
---
PDF链接:
https://arxiv.org/pdf/1711.11137


雷达卡



京公网安备 11010802022788号







