楼主: 能者818
236 0

[统计数据] 预测进化的支持向量机一致性 由未知噪声观测得到的一个未知遍历动力系统 [推广有奖]

  • 0关注
  • 6粉丝

会员

学术权威

78%

还不是VIP/贵宾

-

威望
10
论坛币
10 个
通用积分
39.6240
学术水平
0 点
热心指数
1 点
信用等级
0 点
经验
24699 点
帖子
4115
精华
0
在线时间
1 小时
注册时间
2022-2-24
最后登录
2024-12-24

楼主
能者818 在职认证  发表于 2022-3-5 15:21:30 来自手机 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要翻译:
我们考虑了一个未知遍历动力系统的下一个(可观测)状态的预测问题。例如,我们的主要结果表明,如果(a)未知观测噪声过程是有界的,且具有可和的α-混合率;(b)未知遍历动力系统是由一个Lipschitz连续函数定义的,且Lipschitz连续函数具有可和的相关衰减,则使用高斯RBF核的支持向量机(SVM)可以从噪声观测序列中学习最佳预报员。为了证明这一结果,我们首先建立了SVM和所有满足混合概念的随机过程的一般一致性结果,该混合概念明显弱于$\alpha$-混合。
---
英文标题:
《Consistency of support vector machines for forecasting the evolution of
  an unknown ergodic dynamical system from observations with unknown noise》
---
作者:
Ingo Steinwart, Marian Anghel
---
最新提交年份:
2009
---
分类信息:

一级分类:Statistics        统计学
二级分类:Methodology        方法论
分类描述:Design, Surveys, Model Selection, Multiple Testing, Multivariate Methods, Signal and Image Processing, Time Series, Smoothing, Spatial Statistics, Survival Analysis, Nonparametric and Semiparametric Methods
设计,调查,模型选择,多重检验,多元方法,信号和图像处理,时间序列,平滑,空间统计,生存分析,非参数和半参数方法
--
一级分类:Mathematics        数学
二级分类:Dynamical Systems        动力系统
分类描述:Dynamics of differential equations and flows, mechanics, classical few-body problems, iterations, complex dynamics, delayed differential equations
微分方程和流动的动力学,力学,经典的少体问题,迭代,复杂动力学,延迟微分方程
--
一级分类:Mathematics        数学
二级分类:Statistics Theory        统计理论
分类描述:Applied, computational and theoretical statistics: e.g. statistical inference, regression, time series, multivariate analysis, data analysis, Markov chain Monte Carlo, design of experiments, case studies
应用统计、计算统计和理论统计:例如统计推断、回归、时间序列、多元分析、数据分析、马尔可夫链蒙特卡罗、实验设计、案例研究
--
一级分类:Statistics        统计学
二级分类:Statistics Theory        统计理论
分类描述:stat.TH is an alias for math.ST. Asymptotics, Bayesian Inference, Decision Theory, Estimation, Foundations, Inference, Testing.
Stat.Th是Math.St的别名。渐近,贝叶斯推论,决策理论,估计,基础,推论,检验。
--

---
英文摘要:
  We consider the problem of forecasting the next (observable) state of an unknown ergodic dynamical system from a noisy observation of the present state. Our main result shows, for example, that support vector machines (SVMs) using Gaussian RBF kernels can learn the best forecaster from a sequence of noisy observations if (a) the unknown observational noise process is bounded and has a summable $\alpha$-mixing rate and (b) the unknown ergodic dynamical system is defined by a Lipschitz continuous function on some compact subset of $\mathbb{R}^d$ and has a summable decay of correlations for Lipschitz continuous functions. In order to prove this result we first establish a general consistency result for SVMs and all stochastic processes that satisfy a mixing notion that is substantially weaker than $\alpha$-mixing.
---
PDF链接:
https://arxiv.org/pdf/707.0322
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:支持向量机 动力系统 向量机 一致性 Differential 未知 遍历 观测 序列 支持

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
扫码
拉您进交流群
GMT+8, 2026-2-5 05:06