摘要翻译:
空点是指在社会交往记录中可以找到的一个难以填补的空白空间,是潜在社会网络中没有出现在记录中的人的线索。这一贡献解决了一个预测社会互动中相关空白点的问题。研究了同质网络和非同质网络作为社会互动的基础模型。提出了一种启发式预测函数方法。在同构网络上进行了仿真实验。从模拟通信中生成篮子形式的测试数据。通过对空点预测精度的计算,验证了该方法的有效性。
---
英文标题:
《Predicting relevant empty spots in social interaction》
---
作者:
Yoshiharu Maeno and Yukio Ohsawa
---
最新提交年份:
2008
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Artificial Intelligence 人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
---
英文摘要:
An empty spot refers to an empty hard-to-fill space which can be found in the records of the social interaction, and is the clue to the persons in the underlying social network who do not appear in the records. This contribution addresses a problem to predict relevant empty spots in social interaction. Homogeneous and inhomogeneous networks are studied as a model underlying the social interaction. A heuristic predictor function approach is presented as a new method to address the problem. Simulation experiment is demonstrated over a homogeneous network. A test data in the form of baskets is generated from the simulated communication. Precision to predict the empty spots is calculated to demonstrate the performance of the presented approach.
---
PDF链接:
https://arxiv.org/pdf/0711.1466


雷达卡



京公网安备 11010802022788号







