摘要翻译:
在向量空间V上固定一个非退化的双线性形式后,通过取一个标志到它的正交补,定义了V中标志流形F的对合。当V为3维时,我们检验了J.Bryan和T.Graber的Crepant分辨率猜想成立:[F/Z_2]的亏格零(orbifold)Gromov-Witten势函数与商方案F/Z_2的亏格零(orbifold)Gromov-Witten势函数一致(直到不稳定项),使量子参数为-1,变量线性变化,系数解析连续。crepant分辨率Y(Hilbert格式Hilb^2p^2)中的超曲面)是p^2上一个新的秩2向量丛的投影。
---
英文标题:
《The Crepant Resolution Conjecture for 3-dimensional flags modulo an
involution》
---
作者:
W. D. Gillam
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
After fixing a non-degenerate bilinear form on a vector space V we define an involution of the manifold of flags F in V by taking a flag to its orthogonal complement. When V is of dimension 3 we check that the Crepant Resolution Conjecture of J. Bryan and T. Graber holds: the genus zero (orbifold) Gromov-Witten potential function of [F / Z_2] agrees (up to unstable terms) with the genus zero Gromov-Witten potential function of a crepant resolution Y of the quotient scheme F / Z_2, after setting a quantum parameter to -1, making a linear change of variables, and analytically continuing coefficients. The crepant resolution Y (a hypersurface in the Hilbert scheme Hilb^2 P^2) is the projectivization of a novel rank 2 vector bundle over P^2.
---
PDF链接:
https://arxiv.org/pdf/0708.0842


雷达卡



京公网安备 11010802022788号







