摘要翻译:
在前人的工作中,我们利用C.Sabbah的一个猜想建立了复数上光滑拟射影曲面上平坦代数连接的代数de Rham上同调与对偶连接的快速衰变同调之间的对偶,最近T.Mochizuki对任意维代数连接证明了这个猜想。在本文中,我们验证了Mochizuki的结果也允许将这些对偶结果推广到任意维。
---
英文标题:
《Periods for flat algebraic connections》
---
作者:
Marco Hien
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
In previous work, we established a duality between the algebraic de Rham cohomology of a flat algebraic connection on a smooth quasi-projective surface over the complex numbers and the rapid decay homology of the dual connection relying on a conjecture by C. Sabbah, which has been proved recently by T. Mochizuki for algebraic connections in any dimension. In the present article, we verify that Mochizuki's results allow to generalize these duality results to arbitrary dimensions also.
---
PDF链接:
https://arxiv.org/pdf/0803.3463


雷达卡



京公网安备 11010802022788号







