楼主: mingdashike22
300 0

[计算机科学] PTarithmetic [推广有奖]

  • 0关注
  • 3粉丝

会员

学术权威

78%

还不是VIP/贵宾

-

威望
10
论坛币
10 个
通用积分
74.0016
学术水平
0 点
热心指数
0 点
信用等级
0 点
经验
24862 点
帖子
4109
精华
0
在线时间
1 小时
注册时间
2022-2-24
最后登录
2022-4-15

楼主
mingdashike22 在职认证  发表于 2022-3-5 19:02:00 来自手机 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要翻译:
本文介绍ptarithmetic(“多项式时间算术”的简称)--一种形式数论,类似于众所周知的Peano算术,但基于最近诞生的可计算性逻辑(见http://www.cis.upen.edu/~giorgi/cl.html)而不是经典逻辑。ptarithmetic公式代表了交互式计算问题,而不仅仅是真/假陈述,它们的“真”被理解为多项式时间解的存在。本文所阐述的ptarithmetic体系是健全和完整的。在这个意义上,系统的每一个定理T都表示一个具有多项式时间解的交互式数论计算问题,而且这样的解可以有效地从T的证明中提取出来。在这个意义上,系统的每一个具有多项式时间解的交互式数论问题都由系统的某一个定理T表示的意义上,这种解是完全的。这篇论文是自成一体的,可以阅读,而不需要任何以前对可计算性逻辑的熟悉。
---
英文标题:
《Ptarithmetic》
---
作者:
Giorgi Japaridze
---
最新提交年份:
2010
---
分类信息:

一级分类:Computer Science        计算机科学
二级分类:Logic in Computer Science        计算机科学中的逻辑
分类描述:Covers all aspects of logic in computer science, including finite model theory, logics of programs, modal logic, and program verification. Programming language semantics should have Programming Languages as the primary subject area. Roughly includes material in ACM Subject Classes D.2.4, F.3.1, F.4.0, F.4.1, and F.4.2; some material in F.4.3 (formal languages) may also be appropriate here, although Computational Complexity is typically the more appropriate subject area.
涵盖计算机科学中逻辑的所有方面,包括有限模型理论,程序逻辑,模态逻辑和程序验证。程序设计语言语义学应该把程序设计语言作为主要的学科领域。大致包括ACM学科类D.2.4、F.3.1、F.4.0、F.4.1和F.4.2中的材料;F.4.3(形式语言)中的一些材料在这里也可能是合适的,尽管计算复杂性通常是更合适的主题领域。
--
一级分类:Computer Science        计算机科学
二级分类:Artificial Intelligence        人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
一级分类:Computer Science        计算机科学
二级分类:Computational Complexity        计算复杂度
分类描述:Covers models of computation, complexity classes, structural complexity, complexity tradeoffs, upper and lower bounds. Roughly includes material in ACM Subject Classes F.1 (computation by abstract devices), F.2.3 (tradeoffs among complexity measures), and F.4.3 (formal languages), although some material in formal languages may be more appropriate for Logic in Computer Science. Some material in F.2.1 and F.2.2, may also be appropriate here, but is more likely to have Data Structures and Algorithms as the primary subject area.
涵盖计算模型,复杂度类别,结构复杂度,复杂度折衷,上限和下限。大致包括ACM学科类F.1(抽象设备的计算)、F.2.3(复杂性度量之间的权衡)和F.4.3(形式语言)中的材料,尽管形式语言中的一些材料可能更适合于计算机科学中的逻辑。在F.2.1和F.2.2中的一些材料可能也适用于这里,但更有可能以数据结构和算法作为主要主题领域。
--

---
英文摘要:
  The present article introduces ptarithmetic (short for "polynomial time arithmetic") -- a formal number theory similar to the well known Peano arithmetic, but based on the recently born computability logic (see http://www.cis.upenn.edu/~giorgi/cl.html) instead of classical logic. The formulas of ptarithmetic represent interactive computational problems rather than just true/false statements, and their "truth" is understood as existence of a polynomial time solution. The system of ptarithmetic elaborated in this article is shown to be sound and complete. Sound in the sense that every theorem T of the system represents an interactive number-theoretic computational problem with a polynomial time solution and, furthermore, such a solution can be effectively extracted from a proof of T. And complete in the sense that every interactive number-theoretic problem with a polynomial time solution is represented by some theorem T of the system.   The paper is self-contained, and can be read without any previous familiarity with computability logic.
---
PDF链接:
https://arxiv.org/pdf/0902.2969
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:arithmetic PTA TAR TIC Verification arithmetic 代表 edu 证明 interactive

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
扫码
拉您进交流群
GMT+8, 2026-2-7 05:57