摘要翻译:
我们证明了两个根系之间任何保持角(但不一定是长度)的双射都会引起与相应的复半单李群(或李代数)的张量积重数有关的不等式。我们用两种方法来解释不等式:组合上用Littelmann的路径模型,几何上用定义在正特征代数闭域上的代数群之间的等同性。
---
英文标题:
《Special isogenies and tensor product multiplicities》
---
作者:
Shrawan Kumar and John R. Stembridge
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Representation Theory 表象理论
分类描述:Linear representations of algebras and groups, Lie theory, associative algebras, multilinear algebra
代数和群的线性表示,李理论,结合代数,多重线性代数
--
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
We show that any bijection between two root systems that preserves angles (but not necessarily lengths) gives rise to inequalities relating tensor product multiplicities for the corresponding complex semisimple Lie groups (or Lie algebras). We explain the inequalities in two ways: combinatorially, using Littelmann's Path Model, and geometrically, using isogenies between algebaric groups defined over an algebraically closed field of positive characteristic.
---
PDF链接:
https://arxiv.org/pdf/0706.2324


雷达卡



京公网安备 11010802022788号







