摘要翻译:
有限域${\bf F}_P$上的经典$n$-变量Kloosterman和在${\bf G}_{m,{\bf F}_P}={\bf P}^1_{{\bf F}_P}-{0,\infty\}$上产生一个lisse$\bar{\bf Q}_l$-sheaf${\rm Kl}_{n+1}$,我们称之为Kloosterman sheaf。设$L_p({\bf G}_{m,{\bf F}_p},{\rm Sym}^k{\rm Kl}_{n+1},s)$是${\rm Kl}_{n+1}$的$k$-折叠对称积的$l$-函数。我们构造了一个在${\rm Spec}{\bf Z}$上的有限型显式虚方案$x$,使得$x$的zeta函数的$p$-Euler因子与$l_p({\bf G}_{m,{\bf F}_p},{\rm Sym}^k{\rm Kl}_{n+1},s)$一致。对于$\times^k{\rm Kl}_{n+1}$和$\bigwedge^k{\rm Kl}_{n+1}$我们也证明了类似的结果。
---
英文标题:
《L-functions of Symmetric Products of the Kloosterman Sheaf over Z》
---
作者:
Lei Fu and Daqing Wan
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Number Theory 数论
分类描述:Prime numbers, diophantine equations, analytic number theory, algebraic number theory, arithmetic geometry, Galois theory
素数,丢番图方程,解析数论,代数数论,算术几何,伽罗瓦理论
--
---
英文摘要:
The classical $n$-variable Kloosterman sums over the finite field ${\bf F}_p$ give rise to a lisse $\bar {\bf Q}_l$-sheaf ${\rm Kl}_{n+1}$ on ${\bf G}_{m, {\bf F}_p}={\bf P}^1_{{\bf F}_p}-\{0,\infty\}$, which we call the Kloosterman sheaf. Let $L_p({\bf G}_{m,{\bf F}_p}, {\rm Sym}^k{\rm Kl}_{n+1}, s)$ be the $L$-function of the $k$-fold symmetric product of ${\rm Kl}_{n+1}$. We construct an explicit virtual scheme $X$ of finite type over ${\rm Spec} {\bf Z}$ such that the $p$-Euler factor of the zeta function of $X$ coincides with $L_p({\bf G}_{m,{\bf F}_p}, {\rm Sym}^k{\rm Kl}_{n+1}, s)$. We also prove similar results for $\otimes^k {\rm Kl}_{n+1}$ and $\bigwedge^k {\rm Kl}_{n+1}$.
---
PDF链接:
https://arxiv.org/pdf/0710.2949


雷达卡



京公网安备 11010802022788号







