摘要翻译:
齐次形式的Waring问题要求将形式$F$加性分解为线性形式的幂。一个经典的问题是确定这样的分解何时是唯一的。在本说明中,我改进了arxiv:Math/0406288v1中的工作,并在可除性假设下回答了这个问题。为了做到这一点,我将代数陈述转化为关于具有指定奇点的$p^n$线性方程组的基轨迹的几何陈述。
---
英文标题:
《Base loci of linear systems and the Waring problem》
---
作者:
M. Mella
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
Waring problem for homogeneus forms asks for additive decomposition of a form $f$ into powers of linear forms. A classical problem is to determine when such a decomposition is unique. In this note I refine the work in arXiv:math/0406288v1 and answer this question under a divisibility assumption. To do this I translate the algebraic statement into a geometric one concerning the base loci of linear systems of $P^n$ with assigned singularities.
---
PDF链接:
https://arxiv.org/pdf/0710.5876


雷达卡



京公网安备 11010802022788号







