摘要翻译:
本文介绍了一种新的求解命题可满足性的混合方法SatHyS(SAT HYbrid Solver)。它结合了局部搜索和冲突驱动子句学习(CDCL)方案。每当局部搜索部分达到局部最小值时,就启动CDCL。对于SAT问题,它表现得像一个禁忌列表,而对于未SAT问题,CDCL部分试图关注最小不可满足子公式(MUS)。实验结果表明,上次SAT比赛中的许多类别的SAT实例具有良好的性能。
---
英文标题:
《Integrating Conflict Driven Clause Learning to Local Search》
---
作者:
Gilles Audenard, Jean-Marie Lagniez, Bertrand Mazure, Lakhdar Sa\"is
---
最新提交年份:
2009
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Artificial Intelligence 人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
---
英文摘要:
This article introduces SatHyS (SAT HYbrid Solver), a novel hybrid approach for propositional satisfiability. It combines local search and conflict driven clause learning (CDCL) scheme. Each time the local search part reaches a local minimum, the CDCL is launched. For SAT problems it behaves like a tabu list, whereas for UNSAT ones, the CDCL part tries to focus on minimum unsatisfiable sub-formula (MUS). Experimental results show good performances on many classes of SAT instances from the last SAT competitions.
---
PDF链接:
https://arxiv.org/pdf/0910.1247