摘要翻译:
CODEQ是一种新的基于群体的元启发式算法,它融合了混沌搜索、基于对立的学习、差分进化和量子力学的概念。CODEQ已成功地用于解决各种类型的问题(如约束问题、整数规划问题、工程问题),并取得了良好的效果。本文采用CODEQ来训练前馈神经网络。在三个数据集上,将该方法与粒子群优化算法和差分进化算法进行了比较,取得了令人满意的结果。
---
英文标题:
《Using CODEQ to Train Feed-forward Neural Networks》
---
作者:
Mahamed G. H. Omran and Faisal al-Adwani
---
最新提交年份:
2010
---
分类信息:
一级分类:Computer Science 计算机科学
二级分类:Neural and Evolutionary Computing 神经与进化计算
分类描述:Covers neural networks, connectionism, genetic algorithms, artificial life, adaptive behavior. Roughly includes some material in ACM Subject Class C.1.3, I.2.6, I.5.
涵盖神经网络,连接主义,遗传算法,人工生命,自适应行为。大致包括ACM学科类C.1.3、I.2.6、I.5中的一些材料。
--
一级分类:Computer Science 计算机科学
二级分类:Artificial Intelligence 人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
---
英文摘要:
CODEQ is a new, population-based meta-heuristic algorithm that is a hybrid of concepts from chaotic search, opposition-based learning, differential evolution and quantum mechanics. CODEQ has successfully been used to solve different types of problems (e.g. constrained, integer-programming, engineering) with excellent results. In this paper, CODEQ is used to train feed-forward neural networks. The proposed method is compared with particle swarm optimization and differential evolution algorithms on three data sets with encouraging results.
---
PDF链接:
https://arxiv.org/pdf/1002.0745


雷达卡



京公网安备 11010802022788号







