摘要翻译:
回忆录的目标是发展一个新的上同调理论,包括De Rham和Dolbeault上同调以及Deligne Beilinson上同调,在一般复解析流形的背景下。本文研究了Iwasawa流形的特殊情况,作为非K\\“Ahler情形的一个典型例子,给出了它在Kodaira-Spencer变形理论和Chern类计算中的初步应用。
---
英文标题:
《Autour de la cohomologie de Bott-Chern》
---
作者:
Michel Schweitzer (Institut Fourier, Universit\'e de Grenoble I)
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Differential Geometry 微分几何
分类描述:Complex, contact, Riemannian, pseudo-Riemannian and Finsler geometry, relativity, gauge theory, global analysis
复形,接触,黎曼,伪黎曼和Finsler几何,相对论,规范理论,整体分析
--
---
英文摘要:
The goal of the memoir is to develop a new cohomology theory which encompasses De Rham and Dolbeault cohomology as well as Deligne Beilinson cohomology, in the context of general complex analytic manifolds. The special case of the Iwasawa manifold is investigated as a typical example of what occurs in the non K\"ahler case. Elementary applications to the Kodaira-Spencer deformation theory and to the calculation of Chern classes are given.
---
PDF链接:
https://arxiv.org/pdf/0709.3528


雷达卡



京公网安备 11010802022788号







