摘要翻译:
在本文中,我们试图结束关于随机布尔网络中不同更新方案适用性的争论。我们首次量化了异步RBNs中的松散吸引子,这使得我们可以分析不同更新方案下复杂度的降低。我们还报告了所有更新方案产生非常相似的临界稳定值,这意味着“混沌边缘”不太依赖于更新方案。经过讨论,我们认为同步RBN是合理的生物网络理论模型。
---
英文标题:
《Updating Schemes in Random Boolean Networks: Do They Really Matter?》
---
作者:
Carlos Gershenson
---
最新提交年份:
2004
---
分类信息:
一级分类:Physics 物理学
二级分类:Adaptation and Self-Organizing Systems 自适应和自组织系统
分类描述:Adaptation, self-organizing systems, statistical physics, fluctuating systems, stochastic processes, interacting particle systems, machine learning
自适应,自组织系统,统计物理,波动系统,随机过程,相互作用粒子系统,机器学习
--
一级分类:Physics 物理学
二级分类:Other Condensed Matter 其他凝聚态物质
分类描述:Work in condensed matter that does not fit into the other cond-mat classifications
在不适合其他cond-mat分类的凝聚态物质中工作
--
一级分类:Computer Science 计算机科学
二级分类:Computational Complexity 计算复杂度
分类描述:Covers models of computation, complexity classes, structural complexity, complexity tradeoffs, upper and lower bounds. Roughly includes material in ACM Subject Classes F.1 (computation by abstract devices), F.2.3 (tradeoffs among complexity measures), and F.4.3 (formal languages), although some material in formal languages may be more appropriate for Logic in Computer Science. Some material in F.2.1 and F.2.2, may also be appropriate here, but is more likely to have Data Structures and Algorithms as the primary subject area.
涵盖计算模型,复杂度类别,结构复杂度,复杂度折衷,上限和下限。大致包括ACM学科类F.1(抽象设备的计算)、F.2.3(复杂性度量之间的权衡)和F.4.3(形式语言)中的材料,尽管形式语言中的一些材料可能更适合于计算机科学中的逻辑。在F.2.1和F.2.2中的一些材料可能也适用于这里,但更有可能以数据结构和算法作为主要主题领域。
--
一级分类:Physics 物理学
二级分类:Cellular Automata and Lattice Gases 元胞自动机与格子气体
分类描述:Computational methods, time series analysis, signal processing, wavelets, lattice gases
计算方法,时间序列分析,信号处理,小波,格子气体
--
一级分类:Quantitative Biology 数量生物学
二级分类:Molecular Networks 分子网络
分类描述:Gene regulation, signal transduction, proteomics, metabolomics, gene and enzymatic networks
基因调控、信号转导、蛋白质组学、代谢组学、基因和酶网络
--
一级分类:Quantitative Biology 数量生物学
二级分类:Other Quantitative Biology 其他定量生物学
分类描述:Work in quantitative biology that does not fit into the other q-bio classifications
不适合其他q-bio分类的定量生物学工作
--
一级分类:Quantitative Biology 数量生物学
二级分类:Quantitative Methods 定量方法
分类描述:All experimental, numerical, statistical and mathematical contributions of value to biology
对生物学价值的所有实验、数值、统计和数学贡献
--
---
英文摘要:
In this paper we try to end the debate concerning the suitability of different updating schemes in random Boolean networks (RBNs). We quantify for the first time loose attractors in asyncrhonous RBNs, which allows us to analyze the complexity reduction related to different updating schemes. We also report that all updating schemes yield very similar critical stability values, meaning that the "edge of chaos" does not depend much on the updating scheme. After discussion, we conclude that synchonous RBNs are justifiable theoretical models of biological networks.
---
PDF链接:
https://arxiv.org/pdf/nlin/0402006


雷达卡



京公网安备 11010802022788号







