楼主: 大多数88
15081 0

[数学] 正交Schubert簇切锥的初理想 格拉斯曼尼亚斯 [推广有奖]

  • 0关注
  • 3粉丝

会员

学术权威

67%

还不是VIP/贵宾

-

威望
10
论坛币
10 个
通用积分
70.8997
学术水平
0 点
热心指数
4 点
信用等级
0 点
经验
23294 点
帖子
3809
精华
0
在线时间
0 小时
注册时间
2022-2-24
最后登录
2022-4-15

楼主
大多数88 在职认证  发表于 2022-3-6 15:01:00 来自手机 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要翻译:
在正交Grassmannian中,我们计算了环面不动点切锥对Schubert簇的理想的初始理想。初始理想是无平方的单项式理想,因而是单纯复形的Stanley-Reisner面环。我们描述了这些配合物。这些复形的极大面编码某些不相交的格路径集。
---
英文标题:
《Initial ideals of tangent cones to Schubert varieties in orthogonal
  Grassmannians》
---
作者:
K. N. Raghavan and Shyamashree Upadhyay
---
最新提交年份:
2008
---
分类信息:

一级分类:Mathematics        数学
二级分类:Combinatorics        组合学
分类描述:Discrete mathematics, graph theory, enumeration, combinatorial optimization, Ramsey theory, combinatorial game theory
离散数学,图论,计数,组合优化,拉姆齐理论,组合对策论
--
一级分类:Mathematics        数学
二级分类:Commutative Algebra        交换代数
分类描述:Commutative rings, modules, ideals, homological algebra, computational aspects, invariant theory, connections to algebraic geometry and combinatorics
交换环,模,理想,同调代数,计算方面,不变理论,与代数几何和组合学的联系
--
一级分类:Mathematics        数学
二级分类:Algebraic Geometry        代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--

---
英文摘要:
  We compute the initial ideals, with respect to certain conveniently chosen term orders, of ideals of tangent cones at torus fixed points to Schubert varieties in orthogonal Grassmannians. The initial ideals turn out to be square-free monomial ideals and therefore Stanley-Reisner face rings of simplicial complexes. We describe these complexes. The maximal faces of these complexes encode certain sets of non-intersecting lattice paths.
---
PDF链接:
https://arxiv.org/pdf/0710.2950
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:HUBERT Huber Uber Hub ert ideals 相交 复形 理想 tangent

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2026-1-7 13:36