楼主: 大多数88
571 0

[数学] Frobenius分裂与$G$-Schubert类的几何 [推广有奖]

  • 0关注
  • 3粉丝

会员

学术权威

67%

还不是VIP/贵宾

-

威望
10
论坛币
10 个
通用积分
71.3197
学术水平
0 点
热心指数
4 点
信用等级
0 点
经验
23294 点
帖子
3809
精华
0
在线时间
0 小时
注册时间
2022-2-24
最后登录
2022-4-15

楼主
大多数88 在职认证  发表于 2022-3-2 17:10:00 来自手机 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要翻译:
设$X$是正特征代数闭域$K$上连通约化群$G$的等变嵌入。设$B$表示$G$的Borel子群。$X$中的$G$-Schubert变体是$\diag(G)\cdot V$形式的子变体,其中$V$是$X$中的$B\乘以B$-Orbit闭包。在$x$是一组伴随类型的奇妙压缩的情况下,$G$-Schubert变体是Lusztig的$G$-稳定块的闭包。我们证明了$X$允许Frobenius分裂,它与所有$G$-Schubert变体兼容。此外,当$X$是光滑的、射影的和环形的时,则$X$中的任何$G$-Schubert类都允许一个稳定的Frobenius分裂。虽然这表明$G$-Schubert变体有很好的奇点,但我们给出了一个非正常的$G$-Schubert变体的例子,在一组$G_2$型的奇妙紧致中。最后,我们还将Frobenius分裂的结果推广到更一般的$\MathcalR$-Schubert类。
---
英文标题:
《Frobenius splitting and geometry of $G$-Schubert varieties》
---
作者:
Xuhua He and Jesper Funch Thomsen
---
最新提交年份:
2008
---
分类信息:

一级分类:Mathematics        数学
二级分类:Algebraic Geometry        代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics        数学
二级分类:Commutative Algebra        交换代数
分类描述:Commutative rings, modules, ideals, homological algebra, computational aspects, invariant theory, connections to algebraic geometry and combinatorics
交换环,模,理想,同调代数,计算方面,不变理论,与代数几何和组合学的联系
--
一级分类:Mathematics        数学
二级分类:Representation Theory        表象理论
分类描述:Linear representations of algebras and groups, Lie theory, associative algebras, multilinear algebra
代数和群的线性表示,李理论,结合代数,多重线性代数
--

---
英文摘要:
  Let $X$ be an equivariant embedding of a connected reductive group $G$ over an algebraically closed field $k$ of positive characteristic. Let $B$ denote a Borel subgroup of $G$. A $G$-Schubert variety in $X$ is a subvariety of the form $\diag(G) \cdot V$, where $V$ is a $B \times B$-orbit closure in $X$. In the case where $X$ is the wonderful compactification of a group of adjoint type, the $G$-Schubert varieties are the closures of Lusztig's $G$-stable pieces. We prove that $X$ admits a Frobenius splitting which is compatible with all $G$-Schubert varieties. Moreover, when $X$ is smooth, projective and toroidal, then any $G$-Schubert variety in $X$ admits a stable Frobenius splitting along an ample divisors. Although this indicates that $G$-Schubert varieties have nice singularities we present an example of a non-normal $G$-Schubert variety in the wonderful compactification of a group of type $G_2$. Finally we also extend the Frobenius splitting results to the more general class of $\mathcal R$-Schubert varieties.
---
PDF链接:
https://arxiv.org/pdf/0704.0778
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:HUBERT Huber Uber robe ENI 兼容 变体 嵌入 形式 Lusztig

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
扫码
拉您进交流群
GMT+8, 2026-2-10 15:19