摘要翻译:
纯T-动机由G.Anderson引入,作为Drinfeld模的高维推广,并作为函数域算法中阿贝尔变体的适当类似。为了构造纯T-动机的模空间,第二作者在此之前引入了abelian\tau-sheaf的概念。本文阐明了纯T动机与abelian\tau-sheaves之间的关系。我们得到了相应的拟同质范畴的等价性。此外,我们还发展了两种结构的基本理论,包括态射、同质性、Tate模和局部shtukas。后者是p-可除群的类似物。
---
英文标题:
《Pure Anderson Motives and Abelian \tau-Sheaves》
---
作者:
Matthias Bornhofen, Urs Hartl
---
最新提交年份:
2010
---
分类信息:
一级分类:Mathematics 数学
二级分类:Number Theory 数论
分类描述:Prime numbers, diophantine equations, analytic number theory, algebraic number theory, arithmetic geometry, Galois theory
素数,丢番图方程,解析数论,代数数论,算术几何,伽罗瓦理论
--
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
Pure t-motives were introduced by G. Anderson as higher dimensional generalizations of Drinfeld modules, and as the appropriate analogs of abelian varieties in the arithmetic of function fields. In order to construct moduli spaces for pure t-motives the second author has previously introduced the concept of abelian \tau-sheaf. In this article we clarify the relation between pure t-motives and abelian \tau-sheaves. We obtain an equivalence of the respective quasi-isogeny categories. Furthermore, we develop the elementary theory of both structures regarding morphisms, isogenies, Tate modules, and local shtukas. The later are the analogs of p-divisible groups.
---
PDF链接:
https://arxiv.org/pdf/0709.2809


雷达卡



京公网安备 11010802022788号







