摘要翻译:
我们证明了陈阮上同调中用来定义杯积的阻塞丛是由所谓的年龄分级或度数转移决定的。事实上,阻塞束可以直接计算使用年龄分级。我们得到了陈阮上同调的一个Kunneth定理,作为年龄分级的一个初等性质的直接结果,并解释了其他几个结果--包括Cup积的结合性--如何用类似的方法证明。
---
英文标题:
《The age grading and the Chen-Ruan cup product》
---
作者:
Richard A. Hepworth
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Topology 代数拓扑
分类描述:Homotopy theory, homological algebra, algebraic treatments of manifolds
同伦理论,同调代数,流形的代数处理
--
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
We prove that the obstruction bundle used to define the cup-product in Chen-Ruan cohomology is determined by the so-called `age grading' or `degree-shifting numbers'. Indeed, the obstruction bundle can be directly computed using the age grading. We obtain a Kunneth Theorem for Chen-Ruan cohomology as a direct consequence of an elementary property of the age grading, and explain how several other results - including associativity of the cup-product - can be proved in a similar way.
---
PDF链接:
https://arxiv.org/pdf/0706.4326


雷达卡



京公网安备 11010802022788号







