楼主: 能者818
418 0

[计算机科学] 基于动态脆弱性图的路网交通风险评估 利用 [推广有奖]

  • 0关注
  • 6粉丝

会员

学术权威

78%

还不是VIP/贵宾

-

威望
10
论坛币
10 个
通用积分
39.5040
学术水平
0 点
热心指数
1 点
信用等级
0 点
经验
24699 点
帖子
4115
精华
0
在线时间
1 小时
注册时间
2022-2-24
最后登录
2024-12-24

楼主
能者818 在职认证  发表于 2022-3-6 15:52:50 来自手机 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要翻译:
勒阿弗尔集聚(CODAH)包括16个被分类为Seveso的高门槛机构。在文献中,我们构建脆弱性地图来帮助决策者评估风险。这种办法仍然是静态的,在估计脆弱性时确实考虑到人口流离失所的情况。我们提出了一个基于动态漏洞图的决策工具来评估CODAH不同部门的疏散难度。本文利用地理信息系统(GIS)对地图进行可视化处理,通过大图中的社区检测算法,使地图随道路交通状态的变化而变化。
---
英文标题:
《A Dynamic Vulnerability Map to Assess the Risk of Road Network Traffic
  Utilization》
---
作者:
Michel Nabaa (LITIS), Cyrille Bertelle (LITIS), Antoine Dutot (LITIS),
  Damien Olivier (LITIS), Pascal Mallet
---
最新提交年份:
2009
---
分类信息:

一级分类:Computer Science        计算机科学
二级分类:Artificial Intelligence        人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
一级分类:Physics        物理学
二级分类:Physics and Society        物理学与社会
分类描述:Structure, dynamics and collective behavior of societies and groups (human or otherwise). Quantitative analysis of social networks and other complex networks. Physics and engineering of infrastructure and systems of broad societal impact (e.g., energy grids, transportation networks).
社会和团体(人类或其他)的结构、动态和集体行为。社会网络和其他复杂网络的定量分析。具有广泛社会影响的基础设施和系统(如能源网、运输网络)的物理和工程。
--

---
英文摘要:
  Le Havre agglomeration (CODAH) includes 16 establishments classified Seveso with high threshold. In the literature, we construct vulnerability maps to help decision makers assess the risk. Such approaches remain static and do take into account the population displacement in the estimation of the vulnerability. We propose a decision making tool based on a dynamic vulnerability map to evaluate the difficulty of evacuation in the different sectors of CODAH. We use a Geographic Information system (GIS) to visualize the map which evolves with the road traffic state through a detection of communities in large graphs algorithm.
---
PDF链接:
https://arxiv.org/pdf/0911.1707
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:风险评估 脆弱性 Intelligence Presentation Quantitative Map vulnerability Vulnerability 地图 脆弱性

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2025-12-22 19:14