楼主: 何人来此
245 0

[电气工程与系统科学] 使用多电平信号的Wiener系统的最佳线性逼近; 理论与实验 [推广有奖]

  • 0关注
  • 4粉丝

会员

学术权威

78%

还不是VIP/贵宾

-

威望
10
论坛币
10 个
通用积分
64.8012
学术水平
1 点
热心指数
6 点
信用等级
0 点
经验
24593 点
帖子
4128
精华
0
在线时间
0 小时
注册时间
2022-2-24
最后登录
2022-4-15

楼主
何人来此 在职认证  发表于 2022-3-6 15:57:25 来自手机 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要翻译:
分析了用多级激励序列测量非线性系统最佳线性逼近的问题。通过数值模拟和在包括模拟滤波器和限幅非线性的实际电路上的实验,比较了在Wiener系统输入端应用的不同类型的序列。将序列的性能与高斯白噪声信号进行了比较,以供参考。对于三次非线性情形,用解析的方法导出了随机约束序列最佳线性逼近的理论刻画。数值和实验结果表明,设计三值序列的随机约束方法对奇偶阶非线性都具有较低的敏感性,从而使系统的响应接近于基本线性系统的实际响应。
---
英文标题:
《Best Linear Approximation of Wiener Systems Using Multilevel Signals:
  Theory and Experiments》
---
作者:
A. De Angelis, J. Schoukens, K. R. Godfrey, P. Carbone
---
最新提交年份:
2017
---
分类信息:

一级分类:Electrical Engineering and Systems Science        电气工程与系统科学
二级分类:Signal Processing        信号处理
分类描述:Theory, algorithms, performance analysis and applications of signal and data analysis, including physical modeling, processing, detection and parameter estimation, learning, mining, retrieval, and information extraction. The term "signal" includes speech, audio, sonar, radar, geophysical, physiological, (bio-) medical, image, video, and multimodal natural and man-made signals, including communication signals and data. Topics of interest include: statistical signal processing, spectral estimation and system identification; filter design, adaptive filtering / stochastic learning; (compressive) sampling, sensing, and transform-domain methods including fast algorithms; signal processing for machine learning and machine learning for signal processing applications; in-network and graph signal processing; convex and nonconvex optimization methods for signal processing applications; radar, sonar, and sensor array beamforming and direction finding; communications signal processing; low power, multi-core and system-on-chip signal processing; sensing, communication, analysis and optimization for cyber-physical systems such as power grids and the Internet of Things.
信号和数据分析的理论、算法、性能分析和应用,包括物理建模、处理、检测和参数估计、学习、挖掘、检索和信息提取。“信号”一词包括语音、音频、声纳、雷达、地球物理、生理、(生物)医学、图像、视频和多模态自然和人为信号,包括通信信号和数据。感兴趣的主题包括:统计信号处理、谱估计和系统辨识;滤波器设计;自适应滤波/随机学习;(压缩)采样、传感和变换域方法,包括快速算法;用于机器学习的信号处理和用于信号处理应用的机器学习;网络与图形信号处理;信号处理中的凸和非凸优化方法;雷达、声纳和传感器阵列波束形成和测向;通信信号处理;低功耗、多核、片上系统信号处理;信息物理系统的传感、通信、分析和优化,如电网和物联网。
--
一级分类:Computer Science        计算机科学
二级分类:Numerical Analysis        数值分析
分类描述:cs.NA is an alias for math.NA. Roughly includes material in ACM Subject Class G.1.
cs.na是Math.na的别名。大致包括ACM学科类G.1的材料。
--
一级分类:Computer Science        计算机科学
二级分类:Systems and Control        系统与控制
分类描述:cs.SY is an alias for eess.SY. This section includes theoretical and experimental research covering all facets of automatic control systems. The section is focused on methods of control system analysis and design using tools of modeling, simulation and optimization. Specific areas of research include nonlinear, distributed, adaptive, stochastic and robust control in addition to hybrid and discrete event systems. Application areas include automotive and aerospace control systems, network control, biological systems, multiagent and cooperative control, robotics, reinforcement learning, sensor networks, control of cyber-physical and energy-related systems, and control of computing systems.
cs.sy是eess.sy的别名。本部分包括理论和实验研究,涵盖了自动控制系统的各个方面。本节主要介绍利用建模、仿真和优化工具进行控制系统分析和设计的方法。具体研究领域包括非线性、分布式、自适应、随机和鲁棒控制,以及混合和离散事件系统。应用领域包括汽车和航空航天控制系统、网络控制、生物系统、多智能体和协作控制、机器人学、强化学习、传感器网络、信息物理和能源相关系统的控制以及计算系统的控制。
--

---
英文摘要:
  The problem of measuring the best linear approximation of a nonlinear system by means of multilevel excitation sequences is analyzed. A comparison between different types of sequences applied at the input of Wiener systems is provided by numerical simulations and by experiments on a practical circuit including an analog filter and a clipping nonlinearity. The performance of the sequences is compared with a white Gaussian noise signal for reference purposes. The theoretical characterization of the best linear approximation when using randomized constrained sequences is derived analytically for the cubic nonlinearity case. Numerical and experimental results show that the randomized constrained approach for designing ternary sequences has a low sensitivity to both even and odd order nonlinearities, resulting in a response close to the actual response of the underlying linear system.
---
PDF链接:
https://arxiv.org/pdf/1710.07067
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:wiener Wie Optimization Applications Experimental 随机 基本 方法 实际 approximation

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2025-12-22 03:28