《Asymptotic of Non-Crossings probability of Additive Wiener Fields》
---
作者:
Pingjin Deng
---
最新提交年份:
2016
---
英文摘要:
Let $W_i=\\{W_i(t_i), t_i\\in \\R_+\\}, i=1,2,\\ldots,d$ are independent Wiener processes. $W=\\{W(\\mathbf{t}),t\\in \\R_+^d\\}$ be the additive Wiener field define as the sum of $W_i$. For any trend $f$ in $\\kHC$ (the reproducing kernel Hilbert Space of $W$), we derive upper and lower bounds for the boundary non-crossing probability $$P_f=P\\{\\sum_{i=1}^{d}W_i(t_i) +f(\\mathbf{t})\\leq u(\\mathbf{t}), \\mathbf{t}\\in\\R_+^d\\},$$ where $u: \\R_+^d\\rightarrow \\R_+$ is a measurable function. Furthermore, for large trend functions $\\gamma f>0$, we show that the asymptotically relation $\\ln P_{\\gamma f}\\sim \\ln P_{\\gamma \\underline{f}}$ as $\\gamma \\to \\IF$, where $\\underline{f}$ is the projection of $f$ on some closed convex subset of $\\kHC$.
---
中文摘要:
设$W\\u i=\\{W\\u i(t\\u i),t\\u i\\in\\R\\u+\\},i=1,2,\\ldots,d$是独立的维纳进程$W={W(\\mathbf{t}),t\\in\\R\\u+^d \\}$是加法维纳字段,定义为$W\\u i$的和。对于$\\kHC$(再生核希尔伯特空间$\\W$)中的任何趋势$$f$,我们推导出边界不交叉概率$$P\\u f=P{\\sum\\u{i=1}^{d}W\\u i(t\\i)+f(\\mathbf{t})\\leq u(\\mathbf{t}),\\mathbf{t}in\\R\\u+^ d},其中$$u:\\R\\u+^ d\\rightarrow\\R\\u+$是可测的功能。此外,对于大趋势函数$\\ gamma f>0$,我们证明了渐近关系$\\ ln P{\\ gamma f}\\ sim \\ ln P{\\ gamma \\ underline{f}}$为$\\ gamma \\ to \\ IF$,其中$\\ underline{f}$是$\\ kHC$的某个闭凸子集上$\\ f$的投影。
---
分类信息:
一级分类:Mathematics 数学
二级分类:Probability 概率
分类描述:Theory and applications of probability and stochastic processes: e.g. central limit theorems, large deviations, stochastic differential equations, models from statistical mechanics, queuing theory
概率论与随机过程的理论与应用:例如中心极限定理,大偏差,随机微分方程,统计力学模型,排队论
--
一级分类:Quantitative Finance 数量金融学
二级分类:Risk Management 风险管理
分类描述:Measurement and management of financial risks in trading, banking, insurance, corporate and other applications
衡量和管理贸易、银行、保险、企业和其他应用中的金融风险
--
---
PDF下载:
-->
Asymptotic_of_Non-Crossings_probability_of_Additive_Wiener_Fields.pdf
(156.31 KB)


雷达卡



京公网安备 11010802022788号







