摘要翻译:
本文发展了相对对数收敛上同调理论。利用相对对数收敛上同调与相对对数结晶上同调之间的比较定理,证明了相对对数收敛上同调在某些情况下的相干性,并将相对对数收敛上同调与相对刚性上同调联系起来,证明了当适当光滑族允许较好的适当对数光滑紧性时,相对刚性上同调的相干性和过收敛性的Berthelot猜想的有效性。
---
英文标题:
《Relative log convergent cohomology and relative rigid cohomology I》
---
作者:
Atsushi Shiho
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Number Theory 数论
分类描述:Prime numbers, diophantine equations, analytic number theory, algebraic number theory, arithmetic geometry, Galois theory
素数,丢番图方程,解析数论,代数数论,算术几何,伽罗瓦理论
--
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
In this paper, we develop the theory of relative log convergent cohomology. We prove the coherence of relative log convergent cohomology in certain case by using the comparison theorem between relative log convergent cohomlogy and relative log crystalline cohomology, and we relates relative log convergent cohomology to relative rigid cohomology to show the validity of Berthelot's conjecture on the coherence and the overconvergence of relative rigid cohomology for proper smooth families when they admit nice proper log smooth compactification to which the coefficient extends logarithmically.
---
PDF链接:
https://arxiv.org/pdf/0707.1742


雷达卡



京公网安备 11010802022788号







