摘要翻译:
给出了一个满足一定假设的曲线和它们之间的映射系统的建立,证明了这些曲线上线丛的过收敛截面的经典性判据。结果,我们证明了各种Shimura曲线上模形式的过收敛性。特别地,我们给出了[Kassaei:全实域上Shimura曲线上的P-adic模形式,Compositio Math.140(2004),no 2,359-395]中研究过收敛模形式的经典性判据及其更高层次的推广。
---
英文标题:
《Overconvergence and classicality: the case of curves》
---
作者:
Payman L. Kassaei
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Number Theory 数论
分类描述:Prime numbers, diophantine equations, analytic number theory, algebraic number theory, arithmetic geometry, Galois theory
素数,丢番图方程,解析数论,代数数论,算术几何,伽罗瓦理论
--
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
Given our set-up of a system of curves and maps between them satisfying certain assumptions, we prove a classicality criterion for overconvergent sections of line bundles over these curves. As a result, we prove such criteria for overconvergent modular forms over various Shimura curves. In particular, we provide a classicality criterion for overconvergent modular forms studied in [Kassaei: P-adic modular forms over Shimura curves over totally real fields, Compositio Math. 140 (2004), no 2, 359-395] and their higher-level generalizations.
---
PDF链接:
https://arxiv.org/pdf/0708.0962


雷达卡



京公网安备 11010802022788号







