摘要翻译:
利用几何不变理论(GIT)构造了稳定映射的模空间\bar M_g,n(P^r,d)。这种构造只在C上有效,但一个特例是g的n个标记点的稳定曲线的模空间的GIT表示,\bar M_g,n;这在规范Z上是有效的。我们的方法遵循Gieseker在n=0的情况下构造\bar M_g时使用的方法,尽管我们关于半可集是非空的证明完全不同。
---
英文标题:
《A geometric invariant theory construction of moduli spaces of stable
maps》
---
作者:
Elizabeth Baldwin (Oxford), David Swinarski (Columbia)
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
We construct the moduli spaces of stable maps, \bar M_g,n(P^r,d), via geometric invariant theory (GIT). This construction is only valid over Spec C, but a special case is a GIT presentation of the moduli space of stable curves of genus g with n marked points, \bar M_g,n; this is valid over Spec Z. Our method follows that used in the case n=0 by Gieseker to construct \bar M_g, though our proof that the semistable set is nonempty is entirely different.
---
PDF链接:
https://arxiv.org/pdf/0706.1381


雷达卡



京公网安备 11010802022788号







