摘要翻译:
描述了定义在单群为非算术Fuchsian群的数域上的秩2的全局幂零微分算子。我们证明了这些微分算子有一个S-积分解。这些微分算子与属2中的Teichmueller曲线自然相关联。它们是Chudnovsky的猜想的反例--Chudnovsky和Dwork。我们还确定了亏格2中本原Teichmueller曲线的模域,并在某些情况下给出了一个显式方程。
---
英文标题:
《Differential equations associated with nonarithmetic Fuchsian groups》
---
作者:
Irene Bouw, Martin Moeller
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
一级分类:Mathematics 数学
二级分类:Number Theory 数论
分类描述:Prime numbers, diophantine equations, analytic number theory, algebraic number theory, arithmetic geometry, Galois theory
素数,丢番图方程,解析数论,代数数论,算术几何,伽罗瓦理论
--
---
英文摘要:
We describe globally nilpotent differential operators of rank 2 defined over a number field whose monodromy group is a nonarithmetic Fuchsian group. We show that these differential operators have an S-integral solution. These differential operators are naturally associated with Teichmueller curves in genus 2. They are counterexamples to conjectures by Chudnovsky--Chudnovsky and Dwork. We also determine the field of moduli of primitive Teichmueller curves in genus 2, and an explicit equation in some cases.
---
PDF链接:
https://arxiv.org/pdf/0710.5277


雷达卡



京公网安备 11010802022788号







