摘要翻译:
给出了0亏格的Kleinian奇点和Fuchsian奇点坐标代数的Poincar级数是两个Coxeter元特征多项式的商的概念证明。这些Coxeter元素用三角分类和球面扭转函数进行几何解释。
---
英文标题:
《McKay correspondence for the Poincar\'e series of Kleinian and Fuchsian
singularities》
---
作者:
Wolfgang Ebeling, David Ploog
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
We give a conceptual proof that the Poincar\'e series of the coordinate algebra of a Kleinian singularity and of a Fuchsian singularity of genus 0 is the quotient of the characteristic polynomials of two Coxeter elements. These Coxeter elements are interpreted geometrically, using triangulated categories and spherical twist functors.
---
PDF链接:
https://arxiv.org/pdf/0809.2738


雷达卡



京公网安备 11010802022788号







