摘要翻译:
在Popov近似下,利用Hartree-Fock-Bogoliubov理论研究了有限温度下具有偶极相互作用的稀气体的玻色-爱因斯坦凝聚(BEC)。为了便于计算,我们对偶极交换作用作了一个附加的近似。我们计算了圆柱对称谐波陷阱中凝结物的凝结分数与温度的关系。我们证明了文献[1]中发现的双凹形凝聚体。在某些薄煎饼陷阱中\cite{Ronen07}在零温下也是稳定的,在有限温下也是稳定的。令人惊讶的是,在有限的低温下,这些结构化凝结物的中心密度的下降实际上是增强的。我们解释这个效应。
---
英文标题:
《Dipolar Bose-Einstein condensates at Finite temperature》
---
作者:
Shai Ronen and John Bohn
---
最新提交年份:
2007
---
分类信息:
一级分类:Physics 物理学
二级分类:Statistical Mechanics 统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--
---
英文摘要:
We study a Bose-Einstein condensate (BEC) of a dilute gas with dipolar interactions, at finite temperature, using the Hartree-Fock-Bogoliubov (HFB) theory within the Popov approximation. An additional approximation involving the dipolar exchange interaction is made to facilitate the computation. We calculate the temperature dependence of the condensate fraction of a condensate confined in a cylindrically symmetric harmonic trap. We show that the bi-concave shaped condensates found in Ref. \cite{Ronen07} in certain pancake traps at zero temperature, are also stable at finite temperature. Surprisingly, the dip in the central density of these structured condensates is actually enhanced at low finite temperatures. We explain this effect.
---
PDF链接:
https://arxiv.org/pdf/707.0709


雷达卡



京公网安备 11010802022788号







