摘要翻译:
我们讨论了最近引入的数值链接簇(NLC)算法,该算法允许人们从有限簇的精确对角化中获得热力学极限下量子晶格模型的温度相关性质。我们研究了正方形、三角形和kagome晶格上自旋模型的热力学可观测性。给出了加速NLC收敛的几种聚类和外推方法的结果。我们还将NLC的结果与精确解析表达式(如有)、高温展开式(HTE)、有限周期系统的精确对角化(ED)和量子蒙特卡罗模拟的结果进行了比较。对于许多模型和性质,NLC的结果比HTE和ED要精确得多。
---
英文标题:
《Numerical Linked-Cluster Algorithms. I. Spin systems on square,
triangular, and kagome lattices》
---
作者:
Marcos Rigol, Tyler Bryant, Rajiv R. P. Singh
---
最新提交年份:
2007
---
分类信息:
一级分类:Physics 物理学
二级分类:Statistical Mechanics 统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--
一级分类:Physics 物理学
二级分类:Strongly Correlated Electrons 强关联电子
分类描述:Quantum magnetism, non-Fermi liquids, spin liquids, quantum criticality, charge density waves, metal-insulator transitions
量子磁学,非费米液体,自旋液体,量子临界性,电荷密度波,金属-绝缘体跃迁
--
---
英文摘要:
We discuss recently introduced numerical linked-cluster (NLC) algorithms that allow one to obtain temperature-dependent properties of quantum lattice models, in the thermodynamic limit, from exact diagonalization of finite clusters. We present studies of thermodynamic observables for spin models on square, triangular, and kagome lattices. Results for several choices of clusters and extrapolations methods, that accelerate the convergence of NLC, are presented. We also include a comparison of NLC results with those obtained from exact analytical expressions (where available), high-temperature expansions (HTE), exact diagonalization (ED) of finite periodic systems, and quantum Monte Carlo simulations.For many models and properties NLC results are substantially more accurate than HTE and ED.
---
PDF链接:
https://arxiv.org/pdf/706.3254


雷达卡



京公网安备 11010802022788号







