摘要翻译:
1922年,Ritt建立了复系数多项式的泛函分解理论。特别地,他描述了函数方程f(p(z))=g(q(z))的显式不可分解多项式解。本文研究了紧Riemann曲面上f、g、p、q为全纯函数的情形下的上述方程。我们还建立了一个完整的有理函数的泛函分解理论,最多有两个极点,推广了Ritt理论。特别地,我们给出了Ritt定理、Bilu和Tichy定理的新证明。
---
英文标题:
《Prime and composite Laurent polynomials》
---
作者:
F. Pakovich
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Complex Variables 复变数
分类描述:Holomorphic functions, automorphic group actions and forms, pseudoconvexity, complex geometry, analytic spaces, analytic sheaves
全纯函数,自守群作用与形式,伪凸性,复几何,解析空间,解析束
--
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
In 1922 Ritt constructed the theory of functional decompositions of polynomials with complex coefficients. In particular, he described explicitly indecomposable polynomial solutions of the functional equation f(p(z))=g(q(z)). In this paper we study the equation above in the case when f,g,p,q are holomorphic functions on compact Riemann surfaces. We also construct a self-contained theory of functional decompositions of rational functions with at most two poles generalizing the Ritt theory. In particular, we give new proofs of the theorems of Ritt and of the theorem of Bilu and Tichy.
---
PDF链接:
https://arxiv.org/pdf/0710.3860


雷达卡



京公网安备 11010802022788号







