楼主: 可人4
244 0

[量化金融] 基于多核学习的货币预测 动机特征 [推广有奖]

  • 0关注
  • 2粉丝

会员

学术权威

76%

还不是VIP/贵宾

-

威望
10
论坛币
15 个
通用积分
49.0443
学术水平
0 点
热心指数
1 点
信用等级
0 点
经验
24465 点
帖子
4070
精华
0
在线时间
0 小时
注册时间
2022-2-24
最后登录
2022-4-15

楼主
可人4 在职认证  发表于 2022-3-7 11:32:50 来自手机 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要翻译:
多核学习(MKL)用于复制交易规则在预测资产价格变化时聚合多个金融信息来源时所体现的信号组合过程。为EURUSD货币对构建了一组金融驱动的内核,并用于预测该货币在多个时间范围内的价格移动方向。MKL在预测精度方面优于每一个核。此外,MKL选择的内核权重突出了内核所代表的金融特征中哪些对预测任务最有信息。
---
英文标题:
《Currency Forecasting using Multiple Kernel Learning with Financially
  Motivated Features》
---
作者:
Tristan Fletcher, Zakria Hussain and John Shawe-Taylor
---
最新提交年份:
2010
---
分类信息:

一级分类:Quantitative Finance        数量金融学
二级分类:Statistical Finance        统计金融
分类描述:Statistical, econometric and econophysics analyses with applications to financial markets and economic data
统计、计量经济学和经济物理学分析及其在金融市场和经济数据中的应用
--
一级分类:Quantitative Finance        数量金融学
二级分类:Portfolio Management        项目组合管理
分类描述:Security selection and optimization, capital allocation, investment strategies and performance measurement
证券选择与优化、资本配置、投资策略与绩效评价
--

---
英文摘要:
  Multiple Kernel Learning (MKL) is used to replicate the signal combination process that trading rules embody when they aggregate multiple sources of financial information when predicting an asset's price movements. A set of financially motivated kernels is constructed for the EURUSD currency pair and is used to predict the direction of price movement for the currency over multiple time horizons. MKL is shown to outperform each of the kernels individually in terms of predictive accuracy. Furthermore, the kernel weightings selected by MKL highlights which of the financial features represented by the kernels are the most informative for predictive tasks.
---
PDF链接:
https://arxiv.org/pdf/1011.6097
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:学习的 信号 金融信息 when kernels financial

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2026-1-7 18:04