楼主: 能者818
258 0

[电气工程与系统科学] 基于集成Kalman的配电系统状态估计 过滤 [推广有奖]

  • 0关注
  • 6粉丝

会员

学术权威

78%

还不是VIP/贵宾

-

威望
10
论坛币
10 个
通用积分
39.5640
学术水平
0 点
热心指数
1 点
信用等级
0 点
经验
24699 点
帖子
4115
精华
0
在线时间
1 小时
注册时间
2022-2-24
最后登录
2024-12-24

楼主
能者818 在职认证  发表于 2022-3-7 13:14:00 来自手机 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要翻译:
配电系统的状态估计是提高可靠性和优化系统性能的关键组成部分。状态估计在输电系统中得到了很好的理解,现在在配电网中是一个活跃的研究领域。虽然有几种基于快照的方法已经被用来解决这个问题,但很少有在动态框架中提出的解决方案。本文提出了一种基于过去感知状态估计的配电系统状态估计(PASE)方法,该方法利用集成Kalman滤波器来提高当前状态估计的精度。与基于快照的方法相比,需要更少的相量测量单元(PMU)来实现相同的估计误差目标。与现有方法相反,该方法没有将潮流方程嵌入到估计器中。给出了一个理论公式,以先验地计算所提方法相对于现有技术的优点。本文以33节点配电系统为例,利用实际家庭的用电轨迹,对所提出的方法进行了验证。
---
英文标题:
《State Estimation in Power Distribution Systems Based on Ensemble Kalman
  Filtering》
---
作者:
C. Carquex, C. Rosenberg and K. Bhattacharya
---
最新提交年份:
2017
---
分类信息:

一级分类:Electrical Engineering and Systems Science        电气工程与系统科学
二级分类:Signal Processing        信号处理
分类描述:Theory, algorithms, performance analysis and applications of signal and data analysis, including physical modeling, processing, detection and parameter estimation, learning, mining, retrieval, and information extraction. The term "signal" includes speech, audio, sonar, radar, geophysical, physiological, (bio-) medical, image, video, and multimodal natural and man-made signals, including communication signals and data. Topics of interest include: statistical signal processing, spectral estimation and system identification; filter design, adaptive filtering / stochastic learning; (compressive) sampling, sensing, and transform-domain methods including fast algorithms; signal processing for machine learning and machine learning for signal processing applications; in-network and graph signal processing; convex and nonconvex optimization methods for signal processing applications; radar, sonar, and sensor array beamforming and direction finding; communications signal processing; low power, multi-core and system-on-chip signal processing; sensing, communication, analysis and optimization for cyber-physical systems such as power grids and the Internet of Things.
信号和数据分析的理论、算法、性能分析和应用,包括物理建模、处理、检测和参数估计、学习、挖掘、检索和信息提取。“信号”一词包括语音、音频、声纳、雷达、地球物理、生理、(生物)医学、图像、视频和多模态自然和人为信号,包括通信信号和数据。感兴趣的主题包括:统计信号处理、谱估计和系统辨识;滤波器设计;自适应滤波/随机学习;(压缩)采样、传感和变换域方法,包括快速算法;用于机器学习的信号处理和用于信号处理应用的机器学习;网络与图形信号处理;信号处理中的凸和非凸优化方法;雷达、声纳和传感器阵列波束形成和测向;通信信号处理;低功耗、多核、片上系统信号处理;信息物理系统的传感、通信、分析和优化,如电网和物联网。
--

---
英文摘要:
  State estimation in power distribution systems is a key component for increased reliability and optimal system performance. Well understood in transmission systems, state estimation is now an area of active research in distribution networks. While several snapshot-based approaches have been used to solve this problem, few solutions have been proposed in a dynamic framework. In this paper, a Past-Aware State Estimation (PASE) method is proposed for distribution systems that takes previous estimates into account to improve the accuracy of the current one, using an Ensemble Kalman Filter. Fewer phasor measurements units (PMU) are needed to achieve the same estimation error target than snapshot-based methods. Contrary to current methods, the proposed solution does not embed power flow equations into the estimator. A theoretical formulation is presented to compute a priori the advantages of the proposed method vis-a-vis the state-of-the-art. The proposed approach is validated considering the 33-bus distribution system and using power consumption traces from real households.
---
PDF链接:
https://arxiv.org/pdf/1712.01317
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:kalman Man LMA ALM distribution 没有 测量 潮流 system 估计

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
扫码
拉您进交流群
GMT+8, 2026-1-29 06:45