摘要翻译:
设$G$为有限群,$\lambda$为绝对不可约的$\z[G]$-模,$W$为$\lambda$的权重。对于任何具有群$G$的伽罗瓦复盖,我们将两个对应联系起来,Schur对应和Kanev对应。我们求出了它们之间的关系,并计算了它们的不变量。利用这一点,我们给出了一些Prym-Tyurin变种的新例子。
---
英文标题:
《A Galois-theoretic approach to Kanev's correspondence》
---
作者:
H. Lange, A. Rojas
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
Let $G$ be a finite group, $\Lambda$ an absolutely irreducible $\Z[G]$-module and $w$ a weight of $\Lambda$. To any Galois covering with group $G$ we associate two correspondences, the Schur and the Kanev correspondence. We work out their relation and compute their invariants. Using this, we give some new examples of Prym-Tyurin varieties.
---
PDF链接:
https://arxiv.org/pdf/0707.2441


雷达卡



京公网安备 11010802022788号







