摘要翻译:
证明了在$\MathBB{P}^5$中存在两个新的局部Cohen-Macaulay六次三元族,它们不是二次正规的。这三个方面在作为焦点轨迹的直线的一阶同余领域和完全例外的Monge-Amp\'ere方程的研究中自然出现。这些族中的一个来自于多次$(1,3,3)$的光滑同余,它是指数2和属9的光滑Fano的四倍。
---
英文标题:
《Congruences of lines in $\mathbb{P}^5$, quadratic normality, and
completely exceptional Monge-Amp\`ere equations》
---
作者:
Pietro De Poi and Emilia Mezzetti
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
The existence is proved of two new families of locally Cohen-Macaulay sextic threefolds in $\mathbb{P}^5$, which are not quadratically normal. These threefolds arise naturally in the realm of first order congruences of lines as focal loci and in the study of the completely exceptional Monge-Amp\`ere equations. One of these families comes from a smooth congruence of multidegree $(1,3,3)$ which is a smooth Fano fourfold of index two and genus 9.
---
PDF链接:
https://arxiv.org/pdf/0710.5110


雷达卡



京公网安备 11010802022788号







