摘要翻译:
推广了著名的Shafarevich双曲性猜想,由Viehweg猜想,对于正则极化簇的模叠加,准射影流形允许一个泛有有限态射,它必然是对数广义型的。给出了一个映射到模叠加的拟射影曲面,利用对数复数形式的扩张性质,建立了模映射与曲面的极小模型程序之间的强关系。因此,我们可以很清楚地描述模量图所诱导的纤维化。作为一个推论,对Viehweg关于曲面上族的猜想有一个精炼的肯定的回答。
---
英文标题:
《The structure of surfaces mapping to the moduli stack of canonically
polarized varieties》
---
作者:
Stefan Kebekus and Sandor J. Kovacs
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
Generalizing the well-known Shafarevich hyperbolicity conjecture, it has been conjectured by Viehweg that a quasi-projective manifold that admits a generically finite morphism to the moduli stack of canonically polarized varieties is necessarily of log general type. Given a quasi-projective surface that maps to the moduli stack, we employ extension properties of logarithmic pluri-forms to establish a strong relationship between the moduli map and the minimal model program of the surface. As a result, we can describe the fibration induced by the moduli map quite explicitly. A refined affirmative answer to Viehweg's conjecture for families over surfaces follows as a corollary.
---
PDF链接:
https://arxiv.org/pdf/0707.2054


雷达卡



京公网安备 11010802022788号







