摘要翻译:
本文介绍了一种确定离散和连续动力系统协变李雅普诺夫向量的一般方法。这样就可以解决一些基本问题,例如双曲线的程度,双曲线的程度可以用这些内在向量的横向性来量化。对于空间扩展系统,协变Lyapunov向量具有局部化性质,空间Fourier谱与计算Lyapunov指数的标准程序中得到的正交基有本质的不同。
---
英文标题:
《Characterizing dynamics with covariant Lyapunov vectors》
---
作者:
F. Ginelli, P. Poggi, A. Turchi, H. Chat\'e, R. Livi and A. Politi
---
最新提交年份:
2007
---
分类信息:
一级分类:Physics 物理学
二级分类:Chaotic Dynamics 混沌动力学
分类描述:Dynamical systems, chaos, quantum chaos, topological dynamics, cycle expansions, turbulence, propagation
动力系统,混沌,量子混沌,拓扑动力学,循环展开,湍流,传播
--
一级分类:Physics 物理学
二级分类:Statistical Mechanics 统计力学
分类描述:Phase transitions, thermodynamics, field theory, non-equilibrium phenomena, renormalization group and scaling, integrable models, turbulence
相变,热力学,场论,非平衡现象,重整化群和标度,可积模型,湍流
--
---
英文摘要:
A general method to determine covariant Lyapunov vectors in both discrete- and continuous-time dynamical systems is introduced. This allows to address fundamental questions such as the degree of hyperbolicity, which can be quantified in terms of the transversality of these intrinsic vectors. For spatially extended systems, the covariant Lyapunov vectors have localization properties and spatial Fourier spectra qualitatively different from those composing the orthonormalized basis obtained in the standard procedure used to calculate the Lyapunov exponents.
---
PDF链接:
https://arxiv.org/pdf/706.051


雷达卡



京公网安备 11010802022788号







