摘要翻译:
这是我的博士论文,部分发表在《数学学报》上。本文研究了一类具有弱于正交奇异性的态射。我们构造障碍物使得所谓的半稳定对数结构存在当且仅当障碍物消失。在无幂的情况下,如果障碍物消失,则半稳定对数结构是唯一的,直至唯一同构。因此,我们得到了这类态射族上的一种正则结构。
---
英文标题:
《Log Structures on Generalized Semi-Stable Varieties》
---
作者:
Ting Li
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
This is my PhD Thesis, part of it has published in Acta Mathematica Sinica. In this paper, a class of morphisms which have a kind of singularity weaker than normal crossing is considered. We construct the obstruction such that the so-called semi-stable log structures exists if and only if the obstruction vanishes. In the case of no power, if the obstruction vanishes, then the semi-stable log structure is unique up to a unique isomorphism. So we obtain a kind of canonical structures on this family of morphisms.
---
PDF链接:
https://arxiv.org/pdf/0710.2726


雷达卡



京公网安备 11010802022788号







