摘要翻译:
我们考虑一个多变量密度模型,其中我们从$N$I.I.D估计未知概率密度$F$在给定水平$\nu>0$处的超额质量。观察到的随机变量。该问题在多模态测试、密度等值线聚类、异常检测、分类等方面有着广泛的应用。在文献中,我们首次将过剩质量估计为未知密度f的积分泛函。对于几个风险测度,当$F$属于一般Besov光滑类时,我们给出了一个估计量,并评价了它的收敛速度。特别注意所研究程序的实施和数值研究。看来,我们的程序改进了附加质量估计器。
---
英文标题:
《Functional approach for excess mass estimation in the density model》
---
作者:
Cristina Butucea, Mathilde Mougeot, Karine Tribouley
---
最新提交年份:
2007
---
分类信息:
一级分类:Mathematics 数学
二级分类:Statistics Theory 统计理论
分类描述:Applied, computational and theoretical statistics: e.g. statistical inference, regression, time series, multivariate analysis, data analysis, Markov chain Monte Carlo, design of experiments, case studies
应用统计、计算统计和理论统计:例如统计推断、回归、时间序列、多元分析、数据分析、马尔可夫链蒙特卡罗、实验设计、案例研究
--
一级分类:Statistics 统计学
二级分类:Statistics Theory 统计理论
分类描述:stat.TH is an alias for math.ST. Asymptotics, Bayesian Inference, Decision Theory, Estimation, Foundations, Inference, Testing.
Stat.Th是Math.St的别名。渐近,贝叶斯推论,决策理论,估计,基础,推论,检验。
--
---
英文摘要:
We consider a multivariate density model where we estimate the excess mass of the unknown probability density $f$ at a given level $\nu>0$ from $n$ i.i.d. observed random variables. This problem has several applications such as multimodality testing, density contour clustering, anomaly detection, classification and so on. For the first time in the literature we estimate the excess mass as an integrated functional of the unknown density $f$. We suggest an estimator and evaluate its rate of convergence, when $f$ belongs to general Besov smoothness classes, for several risk measures. A particular care is devoted to implementation and numerical study of the studied procedure. It appears that our procedure improves the plug-in estimator of the excess mass.
---
PDF链接:
https://arxiv.org/pdf/711.0807