楼主: 能者818
463 0

[计算机科学] 用信号不变量实现非线性盲源分离 [推广有奖]

  • 0关注
  • 6粉丝

会员

学术权威

78%

还不是VIP/贵宾

-

威望
10
论坛币
10 个
通用积分
39.5640
学术水平
0 点
热心指数
1 点
信用等级
0 点
经验
24699 点
帖子
4115
精华
0
在线时间
1 小时
注册时间
2022-2-24
最后登录
2024-12-24

楼主
能者818 在职认证  发表于 2022-3-8 08:39:50 来自手机 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要翻译:
给定一个多分量测量的时间序列x(t),非线性盲源分离(BSS)的通常目的是寻找一个由测量分量的统计独立组合组成的“源”时间序列s(t)。本文要求源时间序列在(s,ds/dt)-空间中具有一个密度函数,该密度函数等于各分量密度函数的乘积。BSS问题的这种形式有一个唯一的解决方案,直到置换和组件化转换。可分性对x的某些局部不变(标量)函数施加了约束,这些函数是由数据速度dx/dt的局部高阶相关导出的。数据是可分离的当且仅当它们满足这些约束,并且,如果满足这些约束,源可以从数据显式地构造。用它来分离用单个麦克风记录的两个类似语音的声音,说明了该方法。
---
英文标题:
《Performing Nonlinear Blind Source Separation with Signal Invariants》
---
作者:
David N. Levin (University of Chicago)
---
最新提交年份:
2009
---
分类信息:

一级分类:Computer Science        计算机科学
二级分类:Artificial Intelligence        人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--
一级分类:Computer Science        计算机科学
二级分类:Machine Learning        机器学习
分类描述:Papers on all aspects of machine learning research (supervised, unsupervised, reinforcement learning, bandit problems, and so on) including also robustness, explanation, fairness, and methodology. cs.LG is also an appropriate primary category for applications of machine learning methods.
关于机器学习研究的所有方面的论文(有监督的,无监督的,强化学习,强盗问题,等等),包括健壮性,解释性,公平性和方法论。对于机器学习方法的应用,CS.LG也是一个合适的主要类别。
--

---
英文摘要:
  Given a time series of multicomponent measurements x(t), the usual objective of nonlinear blind source separation (BSS) is to find a "source" time series s(t), comprised of statistically independent combinations of the measured components. In this paper, the source time series is required to have a density function in (s,ds/dt)-space that is equal to the product of density functions of individual components. This formulation of the BSS problem has a solution that is unique, up to permutations and component-wise transformations. Separability is shown to impose constraints on certain locally invariant (scalar) functions of x, which are derived from local higher-order correlations of the data's velocity dx/dt. The data are separable if and only if they satisfy these constraints, and, if the constraints are satisfied, the sources can be explicitly constructed from the data. The method is illustrated by using it to separate two speech-like sounds recorded with a single microphone.
---
PDF链接:
https://arxiv.org/pdf/0904.0643
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:非线性 Presentation correlations Combinations Applications data BSS 数据 变量 组件

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
扫码
拉您进交流群
GMT+8, 2026-1-27 04:06