楼主: 大多数88
243 0

[计算机科学] 将实例视为非I.I.D.的多实例学习。样品 [推广有奖]

  • 0关注
  • 3粉丝

会员

学术权威

67%

还不是VIP/贵宾

-

威望
10
论坛币
10 个
通用积分
70.7797
学术水平
0 点
热心指数
4 点
信用等级
0 点
经验
23294 点
帖子
3809
精华
0
在线时间
0 小时
注册时间
2022-2-24
最后登录
2022-4-15

楼主
大多数88 在职认证  发表于 2022-3-8 13:58:00 来自手机 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要翻译:
多实例学习试图从一个由标记袋组成的训练集中学习,每个标记袋包含许多未标记的实例。以前的研究通常将袋子中的实例视为独立和相同的分布。但是,包中的实例很少是独立的,因此,如果在非I.I.D.中处理这些实例,可以期望更好的性能。利用实例之间关系的方法。本文提出了一种简单有效的多实例学习方法,该方法将每个包看作一个图,通过考虑节点的特征以及表示实例之间某种关系的边的特征,使用特定的核来区分图。实验验证了该方法的有效性。
---
英文标题:
《Multi-Instance Learning by Treating Instances As Non-I.I.D. Samples》
---
作者:
Zhi-Hua Zhou, Yu-Yin Sun, Yu-Feng Li
---
最新提交年份:
2009
---
分类信息:

一级分类:Computer Science        计算机科学
二级分类:Machine Learning        机器学习
分类描述:Papers on all aspects of machine learning research (supervised, unsupervised, reinforcement learning, bandit problems, and so on) including also robustness, explanation, fairness, and methodology. cs.LG is also an appropriate primary category for applications of machine learning methods.
关于机器学习研究的所有方面的论文(有监督的,无监督的,强化学习,强盗问题,等等),包括健壮性,解释性,公平性和方法论。对于机器学习方法的应用,CS.LG也是一个合适的主要类别。
--
一级分类:Computer Science        计算机科学
二级分类:Artificial Intelligence        人工智能
分类描述:Covers all areas of AI except Vision, Robotics, Machine Learning, Multiagent Systems, and Computation and Language (Natural Language Processing), which have separate subject areas. In particular, includes Expert Systems, Theorem Proving (although this may overlap with Logic in Computer Science), Knowledge Representation, Planning, and Uncertainty in AI. Roughly includes material in ACM Subject Classes I.2.0, I.2.1, I.2.3, I.2.4, I.2.8, and I.2.11.
涵盖了人工智能的所有领域,除了视觉、机器人、机器学习、多智能体系统以及计算和语言(自然语言处理),这些领域有独立的学科领域。特别地,包括专家系统,定理证明(尽管这可能与计算机科学中的逻辑重叠),知识表示,规划,和人工智能中的不确定性。大致包括ACM学科类I.2.0、I.2.1、I.2.3、I.2.4、I.2.8和I.2.11中的材料。
--

---
英文摘要:
  Multi-instance learning attempts to learn from a training set consisting of labeled bags each containing many unlabeled instances. Previous studies typically treat the instances in the bags as independently and identically distributed. However, the instances in a bag are rarely independent, and therefore a better performance can be expected if the instances are treated in an non-i.i.d. way that exploits the relations among instances. In this paper, we propose a simple yet effective multi-instance learning method, which regards each bag as a graph and uses a specific kernel to distinguish the graphs by considering the features of the nodes as well as the features of the edges that convey some relations among instances. The effectiveness of the proposed method is validated by experiments.
---
PDF链接:
https://arxiv.org/pdf/0807.1997
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:Intelligence Applications Presentation Independent Application 核来 训练 使用 Instances 性能

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2025-12-21 06:42