摘要翻译:
几十年来,有效市场假说一直是经济学研究的主要内容。特别是,弱形式的市场效率--过去的价格不能预测未来的表现的概念--得到了计量经济学证据的有力支持。相比之下,用于预测股票价格的机器学习算法在不同程度上被吹捧为成功。此外,一些数据科学家吹嘘说,单用价格数据就能获得高于市场的回报。本研究试图将现有的关于弱形式有效市场的计量经济学研究与算法交易中的数据科学创新联系起来。首先,用扩展的Dickey-Fuller检验和方差比检验对过去十年中股票指数价格的平稳性进行了传统的探索。然后,利用五种机器学习算法实现了一个算法交易平台。计量经济学的发现确定了潜在的平稳性,暗示技术评估是可能的,尽管算法交易结果在任何机器学习模型中都找不到预测能力,即使使用趋势特定的度量标准。考虑到交易成本和风险,没有一个系统能够始终如一地获得高于市场的回报。我们的发现加强了弱式市场效率的有效性。
---
英文标题:
《Validating Weak-form Market Efficiency in United States Stock Markets
with Trend Deterministic Price Data and Machine Learning》
---
作者:
Samuel Showalter and Jeffrey Gropp
---
最新提交年份:
2019
---
分类信息:
一级分类:Quantitative Finance 数量金融学
二级分类:Statistical Finance 统计金融
分类描述:Statistical, econometric and econophysics analyses with applications to financial markets and economic data
统计、计量经济学和经济物理学分析及其在金融市场和经济数据中的应用
--
一级分类:Computer Science 计算机科学
二级分类:Computational Engineering, Finance, and Science 计算工程、金融和科学
分类描述:Covers applications of computer science to the mathematical modeling of complex systems in the fields of science, engineering, and finance. Papers here are interdisciplinary and applications-oriented, focusing on techniques and tools that enable challenging computational simulations to be performed, for which the use of supercomputers or distributed computing platforms is often required. Includes material in ACM Subject Classes J.2, J.3, and J.4 (economics).
涵盖了计算机科学在科学、工程和金融领域复杂系统的数学建模中的应用。这里的论文是跨学科和面向应用的,集中在技术和工具,使挑战性的计算模拟能够执行,其中往往需要使用超级计算机或分布式计算平台。包括ACM学科课程J.2、J.3和J.4(经济学)中的材料。
--
一级分类:Computer Science 计算机科学
二级分类:Machine Learning 机器学习
分类描述:Papers on all aspects of machine learning research (supervised, unsupervised, reinforcement learning, bandit problems, and so on) including also robustness, explanation, fairness, and methodology. cs.LG is also an appropriate primary category for applications of machine learning methods.
关于机器学习研究的所有方面的论文(有监督的,无监督的,强化学习,强盗问题,等等),包括健壮性,解释性,公平性和方法论。对于机器学习方法的应用,CS.LG也是一个合适的主要类别。
--
一级分类:Economics 经济学
二级分类:Econometrics 计量经济学
分类描述:Econometric Theory, Micro-Econometrics, Macro-Econometrics, Empirical Content of Economic Relations discovered via New Methods, Methodological Aspects of the Application of Statistical Inference to Economic Data.
计量经济学理论,微观计量经济学,宏观计量经济学,通过新方法发现的经济关系的实证内容,统计推论应用于经济数据的方法论方面。
--
---
英文摘要:
The Efficient Market Hypothesis has been a staple of economics research for decades. In particular, weak-form market efficiency -- the notion that past prices cannot predict future performance -- is strongly supported by econometric evidence. In contrast, machine learning algorithms implemented to predict stock price have been touted, to varying degrees, as successful. Moreover, some data scientists boast the ability to garner above-market returns using price data alone. This study endeavors to connect existing econometric research on weak-form efficient markets with data science innovations in algorithmic trading. First, a traditional exploration of stationarity in stock index prices over the past decade is conducted with Augmented Dickey-Fuller and Variance Ratio tests. Then, an algorithmic trading platform is implemented with the use of five machine learning algorithms. Econometric findings identify potential stationarity, hinting technical evaluation may be possible, though algorithmic trading results find little predictive power in any machine learning model, even when using trend-specific metrics. Accounting for transaction costs and risk, no system achieved above-market returns consistently. Our findings reinforce the validity of weak-form market efficiency.
---
PDF链接:
https://arxiv.org/pdf/1909.05151