楼主: 大多数88
270 0

[电气工程与系统科学] 一种基于人类视觉系统的三维视频质量度量 [推广有奖]

  • 0关注
  • 3粉丝

会员

学术权威

67%

还不是VIP/贵宾

-

威望
10
论坛币
10 个
通用积分
71.0197
学术水平
0 点
热心指数
4 点
信用等级
0 点
经验
23294 点
帖子
3809
精华
0
在线时间
0 小时
注册时间
2022-2-24
最后登录
2022-4-15

楼主
大多数88 在职认证  发表于 2022-3-8 15:49:40 来自手机 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要翻译:
虽然一些2D质量度量已经被提出用于图像和视频,但在3D的情况下,努力只是在初始阶段。在本文中,我们提出了一个新的三维内容的全参考质量度量。我们的方法是围绕人眼视觉系统建模的,融合左右通道的信息,考虑颜色分量、两个视频的视图和视差。性能评估表明,我们的三维质量度量成功地监测了几种典型失真引起的质量下降,与主观评估结果的相关性达到86%。
---
英文标题:
《A Human Visual System-Based 3D Video Quality Metric》
---
作者:
Amin Banitalebi-Dehkordi, Mahsa T. Pourazad, and Panos Nasiopoulos
---
最新提交年份:
2018
---
分类信息:

一级分类:Electrical Engineering and Systems Science        电气工程与系统科学
二级分类:Image and Video Processing        图像和视频处理
分类描述:Theory, algorithms, and architectures for the formation, capture, processing, communication, analysis, and display of images, video, and multidimensional signals in a wide variety of applications. Topics of interest include: mathematical, statistical, and perceptual image and video modeling and representation; linear and nonlinear filtering, de-blurring, enhancement, restoration, and reconstruction from degraded, low-resolution or tomographic data; lossless and lossy compression and coding; segmentation, alignment, and recognition; image rendering, visualization, and printing; computational imaging, including ultrasound, tomographic and magnetic resonance imaging; and image and video analysis, synthesis, storage, search and retrieval.
用于图像、视频和多维信号的形成、捕获、处理、通信、分析和显示的理论、算法和体系结构。感兴趣的主题包括:数学,统计,和感知图像和视频建模和表示;线性和非线性滤波、去模糊、增强、恢复和重建退化、低分辨率或层析数据;无损和有损压缩编码;分割、对齐和识别;图像渲染、可视化和打印;计算成像,包括超声、断层和磁共振成像;以及图像和视频的分析、合成、存储、搜索和检索。
--

---
英文摘要:
  Although several 2D quality metrics have been proposed for images and videos, in the case of 3D efforts are only at the initial stages. In this paper, we propose a new full-reference quality metric for 3D content. Our method is modeled around the HVS, fusing the information of both left and right channels, considering color components, the cyclopean views of the two videos and disparity. Performance evaluations showed that our 3D quality metric successfully monitors the degradation of quality caused by several representative types of distortion and it has 86% correlation with the results of subjective evaluations.
---
PDF链接:
https://arxiv.org/pdf/1803.04624
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:视觉系 Successfully Segmentation Mathematical Presentation 阶段 Visual videos 下降 度量

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
扫码
拉您进交流群
GMT+8, 2026-1-27 05:26