楼主: 大多数88
375 0

[数学] Picard秩为20的K3曲面 [推广有奖]

  • 0关注
  • 3粉丝

会员

学术权威

67%

还不是VIP/贵宾

-

威望
10
论坛币
10 个
通用积分
70.8997
学术水平
0 点
热心指数
4 点
信用等级
0 点
经验
23294 点
帖子
3809
精华
0
在线时间
0 小时
注册时间
2022-2-24
最后登录
2022-4-15

楼主
大多数88 在职认证  发表于 2022-3-8 20:11:20 来自手机 |AI写论文

+2 论坛币
k人 参与回答

经管之家送您一份

应届毕业生专属福利!

求职就业群
赵安豆老师微信:zhaoandou666

经管之家联合CDA

送您一个全额奖学金名额~ !

感谢您参与论坛问题回答

经管之家送您两个论坛币!

+2 论坛币
摘要翻译:
本文用模性、Artin-Tate猜想和类群理论证明了所有复K3曲面的Picard秩为20,其中Neron-Severi群的秩为20,并由定义在q上的因子生成。Elkies用不同的方法证明了椭圆K3曲面在Q上的Mordell-Weil秩为18是不可能的。然后我们将我们的方法应用于一般的奇异K3曲面,即具有秩为20的Neron-Severi群,但不一定是由q上的因子生成的。
---
英文标题:
《K3 surfaces with Picard rank 20》
---
作者:
Matthias Schuett
---
最新提交年份:
2010
---
分类信息:

一级分类:Mathematics        数学
二级分类:Number Theory        数论
分类描述:Prime numbers, diophantine equations, analytic number theory, algebraic number theory, arithmetic geometry, Galois theory
素数,丢番图方程,解析数论,代数数论,算术几何,伽罗瓦理论
--
一级分类:Mathematics        数学
二级分类:Algebraic Geometry        代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--

---
英文摘要:
  We determine all complex K3 surfaces with Picard rank 20 over Q. Here the Neron-Severi group has rank 20 and is generated by divisors which are defined over Q. Our proof uses modularity, the Artin-Tate conjecture and class group theory. With different techniques, the result has been established by Elkies to show that Mordell-Weil rank 18 over Q is impossible for an elliptic K3 surface. We then apply our methods to general singular K3 surfaces, i.e. with Neron-Severi group of rank 20, but not necessarily generated by divisors over Q.
---
PDF链接:
https://arxiv.org/pdf/0804.1558
二维码

扫码加我 拉你入群

请注明:姓名-公司-职位

以便审核进群资格,未注明则拒绝

关键词:card PICA CAR ICA mathematics 猜想 曲面 Weil Severi divisors

您需要登录后才可以回帖 登录 | 我要注册

本版微信群
jg-xs1
拉您进交流群
GMT+8, 2026-1-2 06:30