摘要翻译:
我们比较了有限域上D-椭圆束模簇上有理点个数的渐近增长和其Betti数的渐近增长。这是关于模曲线的一个著名结果向高维的推广。作为主要结果的结果,我们还得到了一个新的渐近最优曲线序列。
---
英文标题:
《Modular varieties of D-elliptic sheaves and the Weil-Deligne bound》
---
作者:
Mihran Papikian
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Number Theory 数论
分类描述:Prime numbers, diophantine equations, analytic number theory, algebraic number theory, arithmetic geometry, Galois theory
素数,丢番图方程,解析数论,代数数论,算术几何,伽罗瓦理论
--
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
We compare the asymptotic grows of the number of rational points on modular varieties of D-elliptic sheaves over finite fields to the grows of their Betti numbers as the degree of the level tends to infinity. This is a generalization to higher dimensions of a well-known result for modular curves. As a consequence of the main result, we also produce a new asymptotically optimal sequence of curves.
---
PDF链接:
https://arxiv.org/pdf/0802.1568


雷达卡



京公网安备 11010802022788号







