摘要翻译:
我们证明了椭圆曲线上相干束范畴的Hall代数(或者,等价地,GL(n)对于所有n的非分枝自同构形式的代数)等于GL(k)的球面双仿射Hecke代数的稳定极限。这两个参数分别对应于有限域的大小和椭圆曲线的模量。在此同构下,Hecke算子映射到Macdonald算子。这使得我们可以根据Eisenstein级数(Hecke算子的特征向量)的适当专门化给出Macdonald多项式(Macdonald算子的特征向量)的几何构造。
---
英文标题:
《The elliptic Hall algebra, Cherednick Hecke algebras and Macdonald
polynomials》
---
作者:
Olivier Schiffmann and Eric Vasserot
---
最新提交年份:
2008
---
分类信息:
一级分类:Mathematics 数学
二级分类:Quantum Algebra 量子代数
分类描述:Quantum groups, skein theories, operadic and diagrammatic algebra, quantum field theory
量子群,skein理论,运算代数和图解代数,量子场论
--
一级分类:Mathematics 数学
二级分类:Algebraic Geometry 代数几何
分类描述:Algebraic varieties, stacks, sheaves, schemes, moduli spaces, complex geometry, quantum cohomology
代数簇,叠,束,格式,模空间,复几何,量子上同调
--
---
英文摘要:
We show that the Hall algebra of the category of coherent sheaves on an elliptic curve (or, equivalently, the algebra of unramified automorphic forms for GL(n) for all n) is equal to the stable limit of spherical double affine Hecke algebras for GL(k) as k goes to infinity. The two parameters correspond to the size of the finite field and the modulus of the elliptc curve. Under this isomorphism the Hecke operators are mapped to the Macdonald operators. This allows us to give a geometric construction of Macdonald polynomials (eigenvectors for the Macdonald operator) in terms of a suitable specialization of Eisenstein series (eigenvectors for the Hecke operators).
---
PDF链接:
https://arxiv.org/pdf/0802.4001


雷达卡



京公网安备 11010802022788号







